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Abstract 

 

Name:  Wedad Ali Almllal 
 

Title of the thesis:  Synthesis and Structure of Substituted Pyridine-based 
Derivatives and their Supramolecular Hydrogen-bonded liquid crystals  
 
Degree: M.Sc. Thesis, Faculty of Science, Cairo University, 2009. 
 

Six laterally methyl-substituted pyridine-based derivatives (Ia-f) of the type 4-
(4'-pyridylazo-3-methylphenyl)-4"-substituted benzoates having the molecular 
formula 4-X-C6H4COOC6H3(3-CH3)-N=N-C5H4N, were prepared and characterized. 
The substituent, X, varies between CH3O, CH3, H, Cl, Br, and CN. Two groups of the 
1:1 complexes between the prepared derivatives (Ia-f) and 4-substituted benzoic acids 
(II) were prepared to investigate the effect of terminal substituents, either on the 
pyridine-based derivative or on the acid component, on the extent and stability of the 
supramolecular liquid crystal phases induced by intermolecular hydrogen bonding.  In 
the first series of complexes (Group A), the non-mesomorphic pyridine-based 
derivative is complexed with the mesomorphic benzoic acid complement that carries 
an alkoxy group of varying chain length.  Complexes of the other series (Group B) 
are composed of the same pyridine-based derivatives, but the benzoic acid 
complement carries small compact polar groups. In group B supramolecular 
complexes, neither of the pyridine-based derivative nor the acid complement is 
mesomorphic, but the hydrogen-bonded complexes are.  The complexes prepared in 
both series were characterized for their mesophase behavior by differential scanning 
calorimetry, DSC, and polarized light microscopy, PLM. Five 4-alkoxybenzoic acids 
(4-CnH2n+1O-C6H4COOH, II8-II16) were used in group A complexes, while seven 4-
substituted benzoic acids (Y-C6H4COOH, IIa-g) were used in group B complexes; the 
substituent Y varies between CH3O, CH3, H, Cl, Br, CN and NO2. Smectic C  
mesophase  of  the  acid  is  retained  in group  A complexes, while the nematic phase 
is induced in some of group B complexes. 

   Keywords: Supramolecular LCs, binary mixtures, 4-(4'-pyridylazo-3-methylphenyl)-
4"-substituted benzoates, 4-substituted benzoic acids. 
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Chapter 1 

 INTRODUCTION TO LIQUID CRYSTALS  

  

     Liquid crystals [12] are intermediate states of matter, or 

mesophases, halfway between an isotropic liquid and a solid crystal. In 

nature, some substances, or even mixtures of substances, represent these 

mesomorphic states. This picture leads to the concept of ordering [13]. In 

a solid crystal, the basic units display translational long-range order, with 

the center of mass of atoms or molecules located on a crystal lattice; in 

some cases, the basic units also display orientational order. In an isotropic 

liquid, the basic units do not present either positional or orientational 

long- range order. From one ordering limit (solid crystal) to the other 

(isotropic liquid), there may exist many different situations. In plastic 

crystals, the basic units (e.g. globular molecules) are located on a lattice 

but without any orientational order. In liquid crystals (LC), the basic units 

display orientational order and even positional order along some 

directions. Liquid crystalline materials flow like an isotropic fluid and 

have characteristic optical properties of solid crystals. Such intermediate 

or mesophases are identified as being a true phase with definite transition 

temperatures and possesses considerable anisotropy that makes them 

distinct among ordinary liquids. This term "Mesophase" , and the 

associated terms "Mesomorphs" ,"Mesomorphism'' , ''Mesomorphic''  ,and 

"Mesoform'' are indeed widely used today, although references to liquid 

crystals are still frequently encountered in the literature.   

The first observations of liquid crystalline or mesomorphic 

behavior were made toward the end of the 19 th century by Reinitzer [14] 

and Lehmann [15]. Since then, several thousands of organic compounds 

are known to form liquid crystals [16]. 
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The amount of order in a liquid crystal is quite small relative to a 

crystal [17]. In a liquid crystal, there is only a slight tendency for the 

molecules to point more in one direction than others or to spend more 

time in various positions than others. The fact that most of the order of a 

crystal is lost when it transforms to a liquid crystal is revealed by the 

value of the latent heat (values are around 250 J/g) which is very typical 

of a crystal to isotropic liquid transition. However, when a liquid crystal 

transforms to an isotropic liquid, the latent heat is much smaller, typically 

about 5 J/g.  

 

1.1. Types of Liquid Crystals: 

              Liquid crystalline materials, in general, may have various types of 

molecular structures. What they all have in common is that they are 

anisotropic. That is, the shape is such that one molecular axis is very 

different from the other two. In such case, the interactions between these 

anisotropic molecules promote orientational and sometimes positional 

order in an otherwise fluid phase. 

Liquid crystals are classified as "Thermotropics" and "Lyotropics", 

depending on the physico-chemical parameters responsible for the phase 

transitions. According to their mode of formation, "Thermotropic Liquid 

Crystals", are directly produced from solids by melting, or from the melt 

by cooling, while "Lyotropic Liquid Crystals", are those formed by 

mixing one or more components with a solvent. 

 

 

1.1.1. Thermotropic Liquid Crystals: 

              In thermotropic liquid crystals the basic units are molecules, and the 

phase transitions depend on temperature and pressure. The mesomorphic 

and  physical  properties of  thermotropic  liquid  material,  and ultimately  
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their suitability for applications, are all fundamentally dictated by the 

chemical structure of the constituent molecules. Before progressing 

further, several terms and their definitions need to be clarified.  The term 

"Mesophase Stability" refers to the upper temperature limit to which the 

mesophase exists while the term "Mesophase Range" means the 

temperature range over which this specific phase exists.  The tendency of 

many materials to supercool before they recrystallize enables the 

mesophase to be exhibited as a metastable state below the melting point, 

and where the mesophase stability is below the melting point the phase is 

termed "Monotropic".  In this case, the mesophase appears only from the 

isotropic melt by cooling.  Conversely, where the mesophase stability is 

higher than the melting point, the phase is termed "Enantiotropic", where 

the mesophase appears both on heating the solid or cooling the isotropic 

melt. 

         A pronounced shape anisotropy is the main feature of the molecules 

which gives rise to a thermotropic mesophase. Beside pure substances, 

mixtures of molecules can also exhibit thermotropic mesomorphic 

properties. Thermotropic LCs are widely used in displays of low energy 

cost and in many sensor devices. 

        The thermotropic LCs could be further classified, according to the 

relative length of their molecular axes into calamitic (rod-like), discotic 

(disc-like), and banana shaped liquid crystals. 

 

 

   

 

 

 

 


