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Abstract

Name: Wedad Ali Almllal

Title of the thesis: Synthesis and Structure of Substituted Pyridine-based
Derivatives and their Supramolecular Hydrogen-bonded liquid crystals

Degree: M.Sc. Thesis, Faculty of Science, Cairo University, 2009.

Six laterally methyl-substituted pyridine-based derivatives (l..f) of the type 4-
(4'-pyridylazo-3-methylphenyl)-4"-substituted benzoates having the molecular
formula 4-X-CgH4sCOOCsH;3(3-CH3)-N=N-CsH4N, were prepared and characterized.
The substituent, X, varies between CH30, CH3, H, ClI, Br, and CN. Two groups of the
1:1 complexes between the prepared derivatives (l..f) and 4-substituted benzoic acids
(1) were prepared to investigate the effect of terminal substituents, either on the
pyridine-based derivative or on the acid component, on the extent and stability of the
supramolecular liquid crystal phases induced by intermolecular hydrogen bonding. In
the first series of complexes (Group A), the non-mesomorphic pyridine-based
derivative is complexed with the mesomorphic benzoic acid complement that carries
an alkoxy group of varying chain length. Complexes of the other series (Group B)
are composed of the same pyridine-based derivatives, but the benzoic acid
complement carries small compact polar groups. In group B supramolecular
complexes, neither of the pyridine-based derivative nor the acid complement is
mesomorphic, but the hydrogen-bonded complexes are. The complexes prepared in
both series were characterized for their mesophase behavior by differential scanning
calorimetry, DSC, and polarized light microscopy, PLM. Five 4-alkoxybenzoic acids
(4-CH2n+10-C¢H4COOH, 118-1116) were used in group A complexes, while seven 4-
substituted benzoic acids (Y-CsHsCOOH, Il,.g) were used in group B complexes; the
substituent Y varies between CH3;O, CHs;, H, Cl, Br, CN and NO,. Smectic C
mesophase of the acid is retained in group A complexes, while the nematic phase
is induced in some of group B complexes.

Keywords: Supramolecular LCs, binary mixtures, 4-(4'-pyridylazo-3-methylphenyl)-
4"-substituted benzoates, 4-substituted benzoic acids.
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Chapter 1
INTRODUCTION TO LIQUID CRYSTALS

Liquid crystals [12] are intermediate states of matter, or
mesophases, halfway between an isotropic liquid and a solid crystal. In
nature, some substances, or even mixtures of substances, represent these
mesomorphic states. This picture leads to the concept of ordering [13]. In
a solid crystal, the basic units display translational long-range order, with
the center of mass of atoms or molecules located on a crystal lattice; in
some cases, the basic units also display orientational order. In an isotropic
liquid, the basic units do not present either positional or orientational
long- range order. From one ordering limit (solid crystal) to the other
(isotropic liquid), there may exist many different situations. In plastic
crystals, the basic units (e.g. globular molecules) are located on a lattice
but without any orientational order. In liquid crystals (LC), the basic units
display orientational order and even positional order along some
directions. Liquid crystalline materials flow like an isotropic fluid and
have characteristic optical properties of solid crystals. Such intermediate
or mesophases are identified as being a true phase with definite transition
temperatures and possesses considerable anisotropy that makes them
distinct among ordinary liquids. This term "Mesophase” , and the
associated terms "Mesomorphs" ,"Mesomorphism™ , *Mesomorphic" ,and
"Mesoform" are indeed widely used today, although references to liquid
crystals are still frequently encountered in the literature.

The first observations of liquid crystalline or mesomorphic
behavior were made toward the end of the 19 ™ century by Reinitzer [14]
and Lehmann [15]. Since then, several thousands of organic compounds

are known to form liquid crystals [16].



The amount of order in a liquid crystal is quite small relative to a
crystal [17]. In a liquid crystal, there is only a slight tendency for the
molecules to point more in one direction than others or to spend more
time in various positions than others. The fact that most of the order of a
crystal is lost when it transforms to a liquid crystal is revealed by the
value of the latent heat (values are around 250 J/g) which is very typical
of a crystal to isotropic liquid transition. However, when a liquid crystal
transforms to an isotropic liquid, the latent heat is much smaller, typically

about 5 J/g.

1.1. Types of Liquid Crystals:

Liquid crystalline materials, in general, may have various types of
molecular structures. What they all have in common is that they are
anisotropic. That is, the shape is such that one molecular axis is very
different from the other two. In such case, the interactions between these
anisotropic molecules promote orientational and sometimes positional
order in an otherwise fluid phase.

Liquid crystals are classified as "Thermotropics" and "Lyotropics",
depending on the physico-chemical parameters responsible for the phase
transitions. According to their mode of formation, "Thermotropic Liquid
Crystals", are directly produced from solids by melting, or from the melt
by cooling, while "Lyotropic Liquid Crystals", are those formed by

mixing one or more components with a solvent.

1.1.1. Thermotropic Liquid Crystals:

In thermotropic liquid crystals the basic units are molecules, and the
phase transitions depend on temperature and pressure. The mesomorphic

and physical properties of thermotropic liquid material, and ultimately



their suitability for applications, are all fundamentally dictated by the
chemical structure of the constituent molecules. Before progressing
further, several terms and their definitions need to be clarified. The term
"Mesophase Stability" refers to the upper temperature limit to which the
mesophase exists while the term "Mesophase Range" means the
temperature range over which this specific phase exists. The tendency of
many materials to supercool before they recrystallize enables the
mesophase to be exhibited as a metastable state below the melting point,
and where the mesophase stability is below the melting point the phase is
termed "Monotropic". In this case, the mesophase appears only from the
isotropic melt by cooling. Conversely, where the mesophase stability is
higher than the melting point, the phase is termed "Enantiotropic", where
the mesophase appears both on heating the solid or cooling the isotropic
melt.

A pronounced shape anisotropy is the main feature of the molecules
which gives rise to a thermotropic mesophase. Beside pure substances,
mixtures of molecules can also exhibit thermotropic mesomorphic
properties. Thermotropic LCs are widely used in displays of low energy
cost and in many sensor devices.

The thermotropic LCs could be further classified, according to the
relative length of their molecular axes into calamitic (rod-like), discotic

(disc-like), and banana shaped liquid crystals.



