An Intelligent Search Technique For Solving Multi- Objective Optimization Problems

By

Mohamed Fathi Goda Elsantawy

A thesis submitted to the Institute of Statistical Studies and Research Cairo University

In partial fulfillment of the requirements for the Degree of

Master of Science In Operations Research

Under the Supervision of

Prof. Dr. Hegazy Mohamed Zaher

Professor of Mathematical Statistics
Dept. of Statistics, Institute of Statistical Studies and Research
Cairo University, Egypt

Dr. Mohamed Bayoumi Ali

Associate Professor Dept. of Decision Support, Faculty of Computers & Information Cairo University, Egypt

Dr. Ramadan A.Zean El-Dean

Assistant Professor

Dept. of Operations Research, Institute of Statistical Studies and Research
Cairo University, Egypt

Certification

I certify that this work has not been accepted in substance of any academic degree and is not being concurrently submitted in candidature of any other degree.

Any portion of this thesis in which I am indebted to other sources are mentioned and explicit references are given.

Student name: Mohamed Fa	athi Goda Elsantawy
Signature:	

Dedication

My mother & father
They were here at the beginning but gone at the end

My brother
He supports me from the beginning till the end

Cairo Oil & Soap Company
My home where my family exists

Contents

	List	of Figu	ires	vii
	List of Tables			vii
	List of Abbreviations			
	Acknowledgements			X
		ımary		xi
1	Introduction			1
	1.1	Backg	round	1
	1.2	Why N	Multi-Objective Optimization	2
	1.3	Motiva	ation & Scope	5
	1.4	Contri	butions & Objectives	5
	1.5	Outline	e of the Thesis	6
2	Basic Concepts		8	
	2.1	Multi-	Objective Optimization	9
	2.2	Evolut	ionary Algorithms	10
		2.2.1	Important Concepts	11
		2.2.2	Multi-Objective Evolutionary Algorithms (MOEAs)	12
	2.3	Swarm	n Intelligence	13
	2.4	2.4 Particle Swarm Optimization		14
		2.4.1	General Characteristics of PSO	15
		2.4.2	PSO Standard Algorithm	16
		2.4.3	Differences and Similarities	18
		2.4.4	Applications	20
	2.5	Multi-	Objective Particle Swarm Optimization (MOPSO)	22
		2.5.1	Modifications	22
		2.5.2	General MOPSO Algorithm	23
		2.5.3	Challenges and Issues	24
3	Mul	ti-Obje	ctive Particle Swarm Optimization (MOPSO)	25
	App	roaches	S	
	3.1	Aggreg	gating Approaches	26
	3.2		ographic Ordering Approaches	27
	3.3		opulation Approaches	28
	3.4		-Based Approaches	30

	3.5	Combined Approaches	41
	3.6	Other Approaches	43
	3.7	Summary	44
4	Lead	Leaders' selection	
	4.1	The Sigma method	47
		4.1.1 What is The Sigma method	48
		4.1.2 Drawbacks and Limitations	49
	4.2	ε-dominance Approach	50
		4.2.1 Concept of ε-dominance	51
		4.2.2 Enhanced ε-dominance	52
		4.2.3 Drawbacks and Limitations	52
	4.3	The Hyper Cubes	53
		4.3.1 The Adaptive Grid	53
		4.3.2 Drawbacks and Limitations	54
	4.4	Maximin fitness function	55
		4.4.1 Explanation and advantages	55
		4.4.2 Drawbacks and Limitations	56
	4.5	The Stripes Method	57
		4.5.1 Explanation	57
		4.5.2 Drawbacks and Limitations	59
	4.6	Fitness Sharing	59
		4.6.1 Lechuga and Rowe Proposal	60
		4.6.2 Drawbacks and Limitations	62
	4.7	Distance Based Ranking	62
		4.7.1 Illustrative Example	62
	4.0	4.7.2 Drawbacks and Limitations	63
	4.8	Preference Ordering	63
		4.8.1 Illustrative Example	64
	4.0	4.8.2 Drawbacks and Limitations	65
	4.9	Summary	66
5		tive Divergence Multi-Objective Particle Swarm	66
		mization Approach (RD-MOPSO)	
	5.1	Motivation	67
	5.2	Relative Divergence	68
		Relative Divergence Scheme	69
	5.4	Advantages of Relative Divergence (RD) scheme	70
	5.5	Illustrative Examples	72
	5.6	Experiments and Results	76

	5.7 Ca	ase Study	82
	5.	7.1 The Animal Fodder Meal Problem	82
	5.	7.2 Cairo Oil & Soap Company	85
	5.	7.3 Problem Formulation	87
	5.	7.4 Solution	89
6 Results and Conclusions			91 93
References			
Appendix		99	
Arabic summary		107	

List of Figures

Figure 1	Hypothetical trade-off solutions for a car-buying decision-making problem	3
Figure 2	Decision and Objective spaces in MOP	9
Figure 3	Flowchart of evolutionary algorithm iteration	12
Figure 4	Two different types of topologies in PSO	18
Figure 5	The progress of the publications of PSO	21
Figure 6	The general pseudo code for MOPSO	23
Figure 7	Sigma method for a two-objective case	48
Figure 8	Sigma method for a three-objective case	49
Figure 9	Drawback of the Sigma method	50
Figure 10	Dominance and ε-dominance	51
Figure 11	An example of the use of ϵ -dominance in an external archive	52
Figure 12	An example in which the $\epsilon\text{-dominance}$ approach retains the wrong point	53
Figure 13	The process of insertion a new solution in the adaptive grid	54
Figure 14	Maximin fitness function method	56
Figure 15	Maximin fitness favors the middle of a convex front	57
Figure 16	Graphical representation of the stripes method	58
Figure 17	Particles which are less crowded are preferred in fitness sharing method	61
Figure 18	Flow Chart of the RD-MOPSO Approach	71
Figure 19	The difference between Maximin and RD schemes	72
Figure 20	The 20 nondominated solutions found in archive in iteration (i)	74
Figure 21	The ten nondominated solutions selected by RD scheme to be leaders	75
Figure 22	The ten nondominated solutions selected by Maximin scheme to be leaders	75
Figure 23	The pareto front produced by RD-MOPSO for ZDT1	79
Figure 24	The Pareto fronts obtained by the six approaches for ZDT1.	79
Figure 25	The pareto front produced by RD-MOPSO for ZDT2.	80
Figure 26	The Pareto fronts obtained by the six approaches for ZDT2.	81
Figure 27	The proposed intelligent system diagram	84

List of Tables

Table 1	Evolutionary Algorithms versus Classical Methods	12
Table 2	Different categories of PSO applications and their percentage	21
Table 3	The number of reviewed MOPSO approaches in each category	45
Table 4	The number of reviewed MOPSO approaches in each year	45
Table 5	Complete list of the MOPSO proposals reviewed	46
Table 6	An illustrative example explaining the DR scheme	63
Table 7	Set of nondominated solutions in R ³	65
Table 8	The dominance relation for all points in 2-element subsets in PO method	65
Table 9	List of Leaders' selection schemes reviewed	66
Table 10	The rank of solutions according to the RD, ADR, Maximin techniques	73
Table 11	The 20 nondominated solutions in the external archive at iteration (i)	73
Table 12	Comparison of results for ZDT1	78
Table 13	Comparison of results for ZDT2	80
Table 14	The Raw materials used in the animal fodder meal production	86
Table 15	The solution set (12 different mixtures for the year)	90

List of Abbreviations

ACO Ant Colony Optimization

AIS Artificial Immune Systems

CA Cellular Automata

DM Decision Maker

EAs Evolutionary Algorithms

GAs Genetic Algorithms

MADA Multi-Attribute Decision Analysis

MCDM Multiple Criteria Decision Making

MOCO Multi-Objective Combinatorial Optimization

MOEA Multi-Objective Evolutionary Algorithm

MOP Multi-objective Optimization Problem

MOPSO Multi-Objective Particle Swarm Optimization

NE Net Energy

NE_g Net Energy required for Growth

NE_m Net Energy required for Maintenance

PSO Particle Swarm Optimization

RD Relative Divergence

RD-MOPSO Relative Divergence Multi-Objective Particle Swarm approach

SA Simulated Annealing

SI Swarm Intelligence

Acknowledgements

I would like to thank my great supervisor Professor Hegazy Zaher for his expert advice and excellent guidance. I would also like to thank Dr Mohamed Bayoumi for his valued supervision and advice; many thanks also go to Dr Ramadan A.Zean El-Dean for his support along the past few years being my eldest brother. Also I would like to extend my appreciation to Dr Ali Ragab the first one who taught me Multi-Objective Optimization, really he done a great work.

I would also like to extend my thanks to all my friends and colleagues at the Institute of Statistical Studies and Research for their most valuable friendship, patience, and encouragement. Without them, really this work won't be done. In particular, and I hope I haven't forgotten anyone, many and special thanks go to S. ELmasry for bearing a lot and being my guide along the past two years, Wael Rateb for his support and helping me in learning Matlab.

Also, I would like to thank Amr Badran for spending nights with me thinking, and developing the code, also special regards to his kind wife for her patience waiting us so late till we finish our work. Many thanks also go to Amany Mohamed Mamdouh for her guidance to my code, removing the complications and solving the problems.

Finally, I would also like to thank all the workers and employees at Cairo Oil & Soap Company for their encouragement and support, providing me with data required, specially the Cost Department, Mr. Taalat Zaki, Mr. Hany Adel, Mr. Mohamed konsowa, Mr. Tarek ELsayed, also Mr. Gamal Gabr, Eng. Ahmed saad For his nice information, finally Mr. Hisham AbdELkhalek who advised me to complete studying my master, supporting, and encouraging me.

Summary

In this thesis work, we introduce a novel scheme to maintain diversity among nondominated solutions found in the external archive, and captured during the search in multi-objective problems. Besides we redefine diversity of solutions into two factors showing that the Relative Divergence (RD) scheme satisfies both factors while the previous related work did not, we also show the advantages of the new scheme over the previous related work.

This scheme is incorporated into particle swarm optimization algorithm resulted in Relative Divergence Multi-Objective Particle Swarm Optimization approach (RD-MOPSO) proposed in this work, we use the new scheme for leaders' selection problem which is a key component when designing a MOPSO approach. The new scheme attains better diversification of selected solutions to be leaders which will be reflected finally on the quality of solutions produced by the algorithm (better diversification). The thesis contains six chapters, and it is organized as following:

<u>Chapter 1:</u> This chapter gives an introduction, showing the outline of the thesis, motivation and contributions of this work.

Chapter 2: This chapter is devoted for basic concepts, this chapter presents Multi-Objective Optimization, Evolutionary Algorithms concepts in brief, and then Multi-Objective Evolutionary Algorithms field is introduced showing its backgrounds. In this chapter an overview on the main features of Swarm Intelligence paradigms in general, focusing on Particle Swarm Optimization field, showing its main principles, terms used in PSO field, a comprehensive survey on the applications of PSO is presented. In the last section of this chapter Multi-Objective Particle Swarm Optimization field is introduced showing the modifications done to original PSO algorithm, challenges and issues aroused when introducing a new proposal in MOPSO field.

<u>Chapter 3:</u> This chapter is made for the previous related work done in Multi-Objective Particle Swarm Optimization field; a complete survey of the state-of-the-art is presented encapsulating 40 proposals to be listed in one table in the end of the chapter.

<u>Chapter 4:</u> In this chapter an important survey is done for the most outstanding schemes presented for leaders' selection problem, analyzing their ideas and showing their advantages, focusing on their drawbacks and limitations.

Chapter 5: In this chapter a novel scheme (RD) is introduced to maintain diversity among nondominated solutions found in the external archive during the process of leaders' selection, also it is shown the advantages of the new scheme over the previous related work. The new scheme is incorporated into particle swarm optimization technique resulted in a new approach (RD-MOPSO), test functions and metrics is done for validation, comparing our approach to six state-of-the-art algorithms and introducing results. In the end of the chapter we introduce a case study found in Cairo Oil and Soap Company, also solution done by our approach is presented.

<u>Chapter 6:</u> This chapter is made for fundamental results and conclusions.

Chapter 1 Introduction

1.1 Background

All areas of human interaction with its environment involve decision situations, decision making should ideally be based on complete knowledge of the alternatives at hand as well as their consequences. Daily we face hundreds of situations to take decisions about, in which it might be so hard (impossible in some cases) to have exact predictions of their consequences or final results, due to the complex nature of these systems we usually have to rely on models, which provide approximations to reality [36]. Here, systems analysis plays an important role, since only a well informed decision maker is in a position to take decisions. In systems analysis, three interrelated activities can be distinguished based on different points of interest:

Modeling: What are the mechanisms that produce a certain behavior or output on a given input, and how can they be described?

Simulation: What output is produced by the system for a given input?

Optimization: What input needs to be provided to the system in order to receive a desired or optimal output?

All three areas are represented by established scientific disciplines with their own methodologies and approaches. This thesis focuses on optimization, i.e., the search for optimal solutions among a set of alternatives.

In general, any optimization problem P can be described as a triple (S, Ω , f), where:

- 1. S is the search space defined over a finite set of decision variables X_i , i = 1, ..., n. In the case where these variables have discrete domains we deal with discrete optimization (or combinatorial optimization), and in the case of continuous domains P is called a continuous optimization problem. Mixed variable problems also exist. Ω is a set of constraints among the variables;
- 2. $f:S \to R$ is the objective function that assigns a cost value to each element (or solution) of S.

The goal is to find a solution $s \in S$ such that $f(s) \le f(s')$, $\forall s' \in S$ (in case we want to minimize the objective function), or $f(s) \ge f(s')$, $\forall s' \in S$ (in case the objective function must be maximized). In real-life problems the goal is often to optimize several objective functions at the same time. This form of optimization is named Multi-Objective Optimization which we are interested in this thesis work [4].

Due to the practical importance of optimization problems, many algorithms to tackle them have been developed in both areas the Single and Multi-Objective Optimization.

1.2 Why Multi-Objective Optimization?

Decision situations often involve multiple criteria or objectives. In many cases, objectives are *incommensurable*, meaning they are not comparable with respect to magnitude and value, and *conflicting*, meaning that the different objectives cannot be arbitrarily improved without decreasing the value of another. This result in trade-offs between the objectives [36].

Let us consider the decision-making involved in buying a car presented by Deb in [19] which helps us in understanding the idea of Multi-Objective Optimization through the

following illustrative example. Cars are available at prices ranging from a few thousand to few hundred thousand dollars. Let us take two extreme hypothetical cars, i.e. one costing about ten thousand dollars (solution 1) and another costing about a hundred thousand dollars (solution 2), as shown in Figure 1.

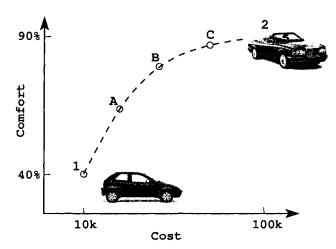


Figure 1. Hypothetical trade-off solutions for a car-buying decision-making problem [19].

If the cost is the only objective of this decision-making process, the optimal choice is solution 1. If this were the only objective to all buyers, we would have seen only one type of car (solution 1) on the road and no car manufacturer would have produced any expensive cars. Fortunately, this decision-making process is not a single-objective one. It is expected that an inexpensive car is likely to be less comfortable. The figure indicates that the cheapest car has a hypothetical comfort level of 40%. To rich buyers for whom comfort is the only objective of this decision-making, the choice is solution 2 (with a hypothetical maximum comfort level of 90%, as shown in figure 1).

This so-called bi-objective optimization problem need not be considered as the two independent optimization problems, the results of which are the two extreme solutions discussed above (solutions 1 and 2). Between these two extreme solutions, there exist many other solutions, where a trade-off between cost and comfort exists. A number of such solutions (solutions A, B, and C) with differing costs and comfort levels are also shown in the figure. Thus, between any two such solutions, one is better in terms of one objective, but this betterment comes only from a sacrifice on the other objective. In this sense, all