Hepatitis B Status in Vaccinated, Incompletely Vaccinated and Unvaccinated Children

Thesis Submitted For Fulfillment of Master Degree
In Pediatrics

By Noha Mohamed Mansour

(MB.,BCH)
Faculty of Medicine
Cairo University

Under Supervision of Pr.Dr. Mortada Hassan El-Shabrawi

Professor of Pediatrics Faculty of Medicine Cairo University

Pr.Dr. Nabil Abd El-Aziz Mohsen

Professor of Pediatrics Faculty of Medicine Cairo University

Dr. Mai Mahmoud Sherif

Assistant Professor of Clinical Pathology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2010

Abstract

In our study, we will evaluate the immune status of HB virus in cohort of 100 children (Fully vaccinated, partially vaccinated and unvaccinated) aged from 1 to 18 years and asking about: Age, If the doses of HB vaccine completed or not, The interval between doses, Any complications after vaccination and Is there is any symptoms or sings of HB virus in unvaccinated children?.

The consequences of failed or incomplete vaccination will be also evaluated in our study in an attempt to recommend therapy for chronic HBV infection.

Key words: immune status - HB virus - Fully vaccinated, partially vaccinated and unvaccinated

Acknowledgment

First & foremost, my deep gratefulness & indebtedness to ALLAH, the most gracious & merciful of the infinite gifts.

I would like to express my sincere appreciation and gratitude to **Dr. Mortada Hassan El-Shabrawi, Prof. Of Pediatrics, Faculty of Medicine, Cairo University,** for his great co-operation, continuous unlimited help and continuous guidance during this work; I am deeply touched by his help and concern.

No words can describe the enormous efforts of **Dr. Nabil Abd El-Aziz Mohsen, Prof. of pediatrics, Faculty of Medicine, Cairo University**, for his honest assistance which made the achievement of this work possible.

I am deeply grateful to **Dr. Mai Mahmoud Sherif, Assisstant Prof. Of Clinical Pathology, Faculty of Medicine, Cairo University**, for her great effort and supervision in the laboratory part.

Last but not least, thanks to children, for their sake, this work was planned.

Dedication

This work is dedicated to the individuals who have given meaning to my life;

To my parents, who gave me everything and took nothing.

To my Prof. Mortada Hassan El-Shabrawi, who supported me, encouraged me to do this work.

Contents

Title	page
List of Tables	VI
List of Figures	VIII
List of Abbreviations	IX
Introduction and Aim of work	1
Review of literature	
Identification of The Hepatitis B Virus:	3
The Hepatitis B Virus	4
The Liver As A target for Hepadnavirus Infection	6
The HBV Life Cycle	9
The HBV Replication	9
The HBV Antigens	11
The HBV Genotypes	16
Mutations	17
The HBV Transmission	19
Clinical Picture of HBV Infection	21
Clinical Spectrum of HBV Infection	23
Clinical Epidemiological Correlation	28
Prevalence of Hepatitis B in Egypt	
HBV Diagnosis and Monitoring	31
Complications	36
Hepatocellular carcinoma	38
Genetic Contribution of HBV and Related Viruses to	42
Management of Children with Chronic HBV Infection	43
Prevention of HBV Infection	50
Subject and Methods	61
Results	68
Discussion	80

Contents

Summary and Conclusion	93
Recommendations	95
References	96
Arabic Summary	-

List of Tables

Table		Page
number		
1	Relation of the age to HBV carrier	26
2	Distinction between acute hepatitis B, resolved past infection and	32
	persistent infection	
3	Serological markers in viral hepatitis type B	33
4	Diagnostic criteria of HBV infection	36
5	Independent risk factors for the development of HCC in HBV infection	40
6	General management of children with chronic hepatitis B virus	44
7	Groups recommended for pre-exposure hepatitis B vaccination	51
8	Options for adding hepatitis B vaccine to childhood immunization	60
	schedules	
9	Age of studied cases	68
10	Mean age of the studied cases	68
11	Age in relation to vaccination status of the studied cases	69
12	Correlation between age and HBsAb titer	70
13	Gender distribution among the studied cases	71
14	Comparison of HBsAb Titer between the studied age groups	71
15	Comparison of HBsAb Titre between males and females	72
16	Hepatitis B markers of the studied cases	72
17	HBsAg in relation to the studied age groups	73
18	HBsAb in relation to the studied age groups	74
19	HBcIgM in relation to the studied age groups	75
20	Conclusion in relation to the studied age groups	75
21	Conclusion of the Vaccination status of the studied age groups	76
22	Individual data of vaccinated children	77
20	Conclusion in relation to the studied age groups	75
21	Conclusion of the Vaccination status of the studied age groups	76
22	Individual data of vaccinated children	77

List of Figures

Figure		Page
number		
1	The hepatitis B virus	5
2	Genes and gene products	6
3	Anatomy of the liver lobule	7
4	HBV replication	10
5	HBV replication	11
6	Out come of hepatitis B virus infection by age at infection	22
7	The worldwide distribution of the approximately 375 million carriers of HBV	27
8	Serological and clinical patterns of acute or chronic HBV infections	34
9	Groups of the studied cases according to the age	69
10	Scatter plot	70
11	Gender distribution of the studied age groups	71
12	Comparison of HBsAb titer in the studied age groups	72
13	HBsAg in relation to the studied age groups	73
14	HBsAb in relation to the studied age groups	74
15	Conclusion of the vaccination status of the studied age groups	76

List of Abbreviations

ADV Adefovir

AFP Alpha Fetoprotein

ALT Alanine Aminotransferase

AST Aspartate Aminotransferase

BCG Bacillus Calmette-Guérin

bDNA branched DNA hybridization

cccDNA covalently closed circular DNA

CDC Center for Disease Control and prevention

CLD Chronic Liver Disease

DNA PCR DNA Polymerase Chain Reaction

DNAp DNA Polymerase

DTP-OPV Diphtheria, Tetanus, Pertussis and Oral Polio Vaccine

EPI Expanded Program on immunization

FDA Food and Drug Administration

Fig Figure

HBcAb Hepatitis B core Antibodies

HBcAg HBc Antigen

HBeAb HBe (envelope) Antibodies

HBeAg HBe Antigen

HBIG Hepatitis B Immune Globulin

HBsAb Hepatitis B surface Antibodies

HBsAg Hepatitis B surface protein(s) or Antigen

HBsAg Hepatitis B surface Antigen

HBV Hepatitis B Virus

HBV DNA Deoxy Ribo Nucleic Acid of HBV

HCC Hepatocellular Carcinoma

HCV Hepatitis C Virus

Abbreviations

IFN-α Interferon-alpha

IFN-γ Interferon-gamma

IgG Immunoglobulin G

IgM Immunoglobulin M

LMV Lamivudine

NIH National Institutes of Health

PCR Polymerase Chain Reaction

Peg-IFN Pegylated Interferon

TNF-α Tumor Necrosis factor-alpha

WHO World Health Organization

Introduction

Childhood hepatitis B virus (HBV) infection is an international health problem, and transmission from mother to infant is a major route of acquisition throughout the world. Infections acquired in childhood are responsible for the largest majority of chronic HBV infection, with its attendant complications of cirrhosis and hepatocellular carcinoma (HCC) (Vogt et al., 2004).

Interruption of childhood HBV infection has a large impact on the prevalence of chronic HBV infection and its sequelae. It is necessary to understand the differences in epidemiology, natural history, clinical features, indications for treatment, and rationale for immunoprophylaxsis between children and adults. Because of immunization and other programs, the annual incidence of new cases in the United States has decreased by more than 50% over the last decade (*McQuillan et al.*, 2002).

Every year between 10 and 30 million people worldwide are infected with HBV many are children and teens. When newborns and young children are infected their immune systems often fail to recognize and vanquish the virus. As a result about 90% of babies will develop a chronic or long-term infection. According to the World Health Organization (WHO) estimates HBV infection kills 1.3 to 1.5 million children and adults worldwide each year (*Thio and Robert 2003*).

The hepatitis B virus is 100 times more infectious than the AIDS virus. Yet, hepatitis B can be prevented with a safe and effective vaccine. For the 400 million people worldwide who are chronically infected with hepatitis B the vaccine is of no use. However, there are promising new treatments for those who live with chronic hepatitis B (*Vogt et al.*, 2004).

Introduction and aim of work

Aim of Work

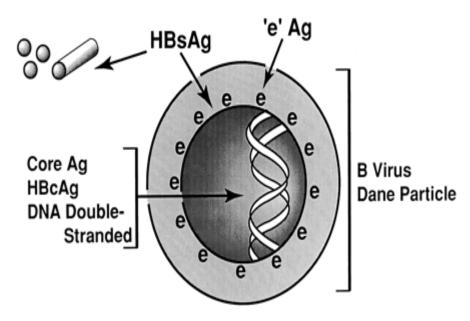
To assess the prevalence of Hepatitis B virus infection, antibody persistence and protection from hepatitis B virus (HBV) infection after primary HBV vaccination of healthy normal children.

Identification of the Hepatitis B Virus

Until World War II, doctors did not even know that several types of viral hepatitis excited, nor did they know how the infection is transmitted. A British physician, who is specialized in liver disorders **Dr.F.O.MacCallum**, identified the HBV when he was researching a yellow fever vaccine during **1940**. **Dr.MacCallum** discovered that many British soldiers who received Yellow fever vaccine developed hepatitis a few months later; at that time the Yellow fever vaccine was made from human serum (blood). He deduced that a form of viral hepatitis was transmitted by blood after he tracked hepatitis outbreaks in patients who were subjected to reused syringes. He called the disease transmitted by contaminated blood hepatitis B or serum Hepatitis (**Harlod and Margolis.**, **1998**).

In 1963, **Dr Baruch Blumberg**, who was studying hemophilia at the National Institute of Health (NIH), discovered an antigen, identified as hepatitis B surface antigen, and it was found in patients suffered from hepatitis and was initially called Australian Antigen. **Dr Blumberg** developed a test that identified hepatitis B viruses in blood samples. In 1971, the test became the first method for screening blood donations for the virus (**Hepatitis B Foundation., 2000**).

Together **Blumberg** and **Millman** developed a vaccine against hepatitis B and won a Nobel Prize for medicine in 1976 in recognition of their achievement (**CDC 2001b**).


The Hepatitis B Virus

Hepatitis B virus is the prototype member of the family hepadnaviridae that can be divided into the orthohepadnaviruses of mammals and the avihepadnaviruses of birds. To date, the orthohepadnaviruses are found only in humans and primates. Primate HBV were found in old world primates like chimpanzees, gorillas, gibbons and in one new world primate, the woolly monkey (**Schaefer., 2007**). The avian hepatitis B viruses are important as an animal model for the understanding of the life cycle of hepadnaviridae (**Funk., 2007**).

The hepatitis B virus is a 42 nm partially double stranded DNA virus, composed of a 27 nm nucleocapsid core (HBcAg), surrounded by an outer lipoprotein coat (also called envelope) containing the surface antigen (HBsAg) (Ganem et al., 2001).

Three morphological forms can be seen on electron microscopy: double-shelled spheres (intact virions), smaller spherical particles, and tubular structures. The outer surface of the intact virion is composed of viral envelope protein or surface antigen (HBsAg). The internal part of the virion consists of a nucleocapsid; composed of two proteins, the core antigen (HBcAg) and the e-antigen (HBeAg) that surrounds the genome (Fig 1) (Akarca and Lok., 1995), (Lok et al., 2001).

Hepatitis B Virus (HBV)

Fig 1: The hepatitis B virus

The smaller spherical particles and tubular structures are composed of excess HBsAg and may outnumber the intact virions by a factor of 100 to 1000. The infectious virion has an incomplete (partially single stranded), open circular DNA genome of 3200 base pairs (3.2 kb), comprising four genes: S (that encodes the envelope or surface antigen), C (that encodes the core protein and e-antigen), P (that encodes a DNA polymerase that also has reverse transcriptase activity), and X (a transactivating protein that can enhance the replication of HBV as well as HIV and that appears to be more frequently expressed in patients with severe liver disease and Hepatocellular carcinoma, in clinical practice, this viral protein is of limited relevance or application) (Lok et al., 2001).

Although the genome is small, it can produce these four large proteins because the genes overlap. For example, the S gene overlaps the