IMPROVING HEAT TOLERANCE OF BROILER CHICKS TO HEAT STRESS CONDITIONS

By

AHMED GOUDA ABD ALLAH ABD ALLAH

B.Sc. Agric. Sc. (Poultry Production), Zagazig University, 2004

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

IMPROVING HEAT TOLERANCE OF BROILER CHICKS TO HEAT STRESS CONDITIONS

By

AHMED GOUDA ABD ALLAH ABD ALLAH

B.Sc. Agric. Sc., (Poultry Production), Zagazig University, 2004

This thesis for M. Sc. degree has been approved by:
Prof. Dr. Abd El-Rhaman Mohamed M. Atta
Prof. of Poultry Physiology, Faculty of Agriculture, Cairo
University
Dr. Sayed Ahmed Abdel Fattah
Associate Prof. of Poultry Physiology, Faculty of
Agriculture, Ain Shams University
Prof. Dr. Alaa El- Dien Abd El- Salam Hemid
Prof. of Poultry Nutrition, Faculty of Agriculture, Air
Shams University
Prof. Dr. Ibrahim El- Wardany El- Sayed
Prof. Emeritus of Poultry Physiology, Faculty of
Agriculture, Ain Shams University

Date of Examination: 8 / 8 / 2010

IMPROVING HEAT TOLERANCE OF BROILER CHICKS TO HEAT STRESS CONDITIONS

By

AHMED GOUDA ABD ALLAH ABD ALLAH

B.Sc. Agric. Sc., (Poultry Production), Zagazig University, 2004

Under the supervision of:

Prof. Dr. Ibrahim El- Wardany El- Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Alaa El- Dien Abd El- Salam Hemid

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mosaad Mohammed Ali El- Monairy

Research Prof. of Poultry Nutrition, Department of Animal Production, National Research Center

ABSTRACT

Ahmed Gouda Abd-Allah Abd-Allah: Improving Heat Tolerance of Broiler Chicks to Heat Stress Conditions. Unpublished M.Sc. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2010.

The beneficial effect of raising ambient temperature at early Age, some feeding programs and their combination in improving productivity of broiler chicks under summer season stress conditions was examined. A total of 200 one day old commercial broiler chicks were used in the present study. They were divided in two groups of 100 birds each. The first group was subjected to 38°C ±1° for 24h at d-5 post-hatching (heat conditioning group, H.C) while the second group was kept as a control (non heat conditioning group, N.H.C) .At d-7 birds were individually weighed, wing banded and then divided into four sub groups with approximately similar initial body weight . The sup groups were qualitative (70 %) feed restriction (FR) on d 7, 8 and 9 post-hatching, feed withdrawal (FWD) for 24h on d 9 and supplemental vitamin C (Vit C) group from 21 to 42 DOA and then the control group.

Chicks of all treatments were kept under similar managerial, hygienic and environmental conditions and vaccinated against common diseases.

Results indicate that average body weight, weight gain, feed intake and feed conversion ratio were significantly affected at 21 and 42 DOA. Respiration rate and body temperature were significantly reduced at 21 and 42 DOA. A varying magnitude in the relative weights of some internal organs, carcass, thigh, breast, and abdominal fat, heart, gizzard and LIVER were recorded. Thyroidal hormones (T₃,

 T_4) and their ratio T_3 / T_4 showed considerable changes related to age of broiler chicks.

Moreover, plasma total protein, albumin, globulin and A/G ratio were significantly changed by different treatments. Besides, blood hemoglobin concentration, haematocrit (%) and H/L ratio leukocytes were significantly affected by treatments. Also, total antibody against to Newcastle disease Virus **NDV** in response to treatments was significantly affected 20 days post Vaccination. Heat shock protein 70 (**HSP70**), was also changed by treatments

It is concluded from the present results that subjecting broiler chickens to early age heat conditioning at 5 DOA or using some feeding programs (FR, FWD and Vit C) during hot environmental temperatures could improve the productivity of broiler chicks under summer stress conditions.

Key words: Broiler chicks, heat conditioning, feed restriction, feed withdrawal, vitamin C, blood parameters, performance.

ACKNOWLEDGMENTS

First of all, thanks are due to our merciful "ALLAH" for continuous help through out my study and my life.

I would like to express my deep personal gratitude and sincere appreciation to **Prof. Dr. Ibrahim El- Wardany El- Sayed,** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his supervision, suggesting the problems, valuable advices and help in revising the manuscript to be in its final form.

I am extremely grateful to **Prof. Dr. Alaa El- Dien Abd El-Salam Hemid,** Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for supervision, providing facilities, valuable advices and kind help during the course of the study.

My deep gratitude is extended to **Prof. Dr. Mosaad Mohammed Ali El- Monairy,** Professor of Poultry Nutrition,

Department of Animal Production, National Research Center, for suggesting the problem, his close and continuous supervision, providing the facilities, revising the manuscript and support during this work.

I wish to express my deepest thanks to Co- supervisor **Dr. Ahmed El-Sayed Gehad,** Dr. of Poultry Physiology, Department of Animal Production, National Research Center, for his valuable advices, co- operation, encouragement guidance and constant interest throughout this work.

I would like to express my deep thanks to all the staff members and poultry physiology colleagues in the Department of Poultry Production, Faculty of Agriculture, Ain Shams University and The Department of Animal Production, National Research Center, for their support and kind help.

Finally, I wish to express my deepest appreciation to my beloved mother, all members of my family and my friends for their continuous support, incredible encouragement and unlimited help during my study.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATION	VII
INTRODUCTION	1
REVIEW OF LITERATURE	
1- Effect of heat stress on productive performance	4
2- Physiological response to heat stress	7
2-1 Body temperature and respiratory rate	7
2-2 Blood constituents	9
2-2-1 Thyroid hormones (T ₃ and T ₄)	9
2-2-2 Plasma total protein, albumin and globulin	10
2-2-3 Hematocrit (Ht %) Hemoglobin(Hb g/dL)	11
3- Immunophysiological response to heat stress	12
3-1 Heterophils/ lymphocytes ratio (H/ L)	12
3-2 Antibody production	13
4- Effect of early age heat conditioning on productive performance of	15
broiler chicks	
5- Effect of some feeding programes	18
5-1 Vitamin C (Vit C)	18
5-2 Early feed restriction (FR)	22
5-3 Feed withdrawal	24
6- Heat Shock protein responses (HSP)	26
6-1 Different types of heat shock proteins	27
6-2 Heat shock protein 70	30
6-2-1 Induction of HSP70	31
6-2-2 Hsp70 functions	33

7- Heat Shock protein 70 and feeding programs.	38
MATERIALS AND METHODS	
1- Birds, management and experimental treatments	41
2- The experimental diet's	42
3- The experimental design	44
4- Studied traits	44
4.1- Growth performance parameters	44
4.2- Carcass characteristics and some organs weight	44
4.3- Physiological parameters	45
a- Rectal Temperature and Respiration Rate	45
b- Blood collection	45
c- Hemoglobin determination	45
4.4- Biochemical Parameters	45
4.5- Humoral Immune Response:	46
a- Heterophils to Lymphocytes Ratio (H/L ratio)	46
b-Immunization and Titration against Newcastle Disease Virus	46
(NDV)	
- Preparation of Phosphate Buffered Saline (PBS)	46
- Preparation of NDV Antigen	46
- Preparation of Chicken Red Blood Cells (cRBC) Suspension	46
- NDV- Hemagglutination Inhibition (HI) Titers	47
5- Measurement of Heat shock proteins	47
- Liver hsp70 determination	47
6- Economical efficiency	48
7- Statistical analysis	48
RESULTS AND DISCUSSION	
1- Productive performance of broiler chickens at different ages	49
1.1- Body weight (BW) and body weight gain (BWG)	49

1.2- Feed intake and Feed conversion ratio	
2- Rectal temperature (°C) and respiration rate (Frequency / min)	
3- Relative weights (%) of carcass and some organs of broiler chickens at 42 days of age.	59
4- Plasma thyroid hormones	62
5- Some blood parameters	66
5.1- Blood heamatological parameters	66
5.2- Plasma total protein, albumin (A), globulin (G) and A/G ratio	69
6- Antibody production	74
- Immunization and Titration against Newcastle Disease Virus (NDV)	74
7- Heat shock protein 70 (HSP70)	76
8- Economical efficiency (EE)	81
SUMMARY AND CONCLUSION	84
REFERENCES	88
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Composition and calculated analysis of the experimental diets.	43
2	Effect of different treatments on body weight and body weight gain of broiler chickens at different ages.	50
3	Effect of different treatments on Feed intake and Feed conversion ratio of broiler chickens at different ages.	53
4	Effect of different treatments on rectal temperature (°C) and respiration rate (Frequency / min) of broiler chickens at different ages.	57
5	Relative weights of carcass and some organs of broiler chickens at 42 days of age.	60
6	Plasma triiodothyronine (T3), thyroxin (T4) levels and (T3/T4) ratio of broiler chickens at 3 and 6 weeks of age.	64
7	Effect of different treatment on hematocrit (Ht), hemoglobin (Hb) and H/L ratio of broiler chickens at 3 and 6 weeks of age.	67
8	Plasma total protein, albumin, globulin and A/G ratio of broiler chickens at 3 weeks of age.	70
9	Plasma total protein, albumin, globulin and A/G ratio of broiler Chickens at 6 weeks of age.	71
10	Effect of different treatments on immunization to Newcastle disease Virus 10 and 20 days post Vaccination (at 31 and 42 days of age).	75
11	Rectal temperature, Respiration rate and Liver Hsp70 of broiler after 5 h Of heat exposure at 5 days.	77
12	Effect of different treatments on Heat shock protein 70 (HSP70) of broiler at 3 and 6 weeks of age.	80

Effect of different treatments on economical efficiency, at the end of the experimental period.

LIST OF FIGURES

Figure		Page
1	Different types of heat shock proteins	28
2	Physiological signals that activate heat shock protein (Hsp70)	37
	Expression.	
3	The experimental design	44
4	Effect of different treatments on rectal temperature (°C) of	58
	broiler chickens at different ages.	
5	Effect of different treatments on respiration rate (Frequency /	58
	min) of broiler chickens at different ages.	
6	Relative weights of carcass and some organs of broiler	61
	chickens at 42 days of age.	
7	Plasma triiodothyronine (T_3) , thyroxin (T_4) levels and (T_3/T_4)	65
	ratio of broiler chickens at 3 and 6 weeks of age.	
8	Effect of different treatments on hematocrit (Ht), hemoglobin	68
	(Hb) and H/ L ratio of broiler chickens at 3 and 6 weeks of	
	age.	
9	Plasma total protein, albumin (A), globulin (G) and A/G ratio	73
	at 3 and 6 WOA.	
10	Effect of different treatments on immunization to Newcastle	76
	disease Virus 10 and 20 days post Vaccination (at 31 and 42	
	days of age).	
11	Effect of different treatments on heat shock protein 70	81
	(HSP70) of broiler at different ages.	
12	Effect of different treatments on economical efficiency, at the	82
	end of the experimental period.	

LIST OF ABBREVIATIONS

AA Ascorbic acid A.F abdominal fat

A/G Albumin to globulin
BC blood capillaries
BV blood vessels
BW Body weight
BWG Body weight gain

°C Dgree of centenary

Cd Cadmium
CF Crude Fiber
CS Corticosterone
DOA Day of age

EE Economical Efficiency FCR Feed conversion ratio

Fig Figure

FR feed restriction FWD feed withdrawal

g gram

GLM General Linear Models

h hours

Hb Hemoglobin

HI Homagglutination inhibition H/L Heterophils to lymphocytes

HS Heat Shock

HSC Heat Shock constitutive

HSF Heat Shock factor
HSP Heat Shock proteins
hse heat shock element

VIII

Ht Hematocrit

IBD Infectious bursal disease

KD Kilo daltonKg Kilo gram

ME Metabolizable energy

mg mille gram min minute

NDV Newcastle disease Virus

Ng nanogram

NHS Non heat chock

NRC National Research Council

ppm part per million RH Relative humidity

RIA Radio- immune- assay

RR Respiration rate

SOD Superoxide dismutase SRBC'S Sheep Red Blood Cells

T3 Triiodothyronine

T4 Thyroxine

Tb Body temperature

VitC vitamin C- supplied diet

Vit Vitamin
Vs Versus
Wk Week

WOA Week of age
WP white pulp
% Percent