

Ain Shams University Faculty of Women for Arts, Science and Education. Chemistry Department

Synthesis of Heterocyclic Compounds via Enaminone

A Thesis Submitted for the degree of M.Sc. in Science (Organic Chemistry)

Presented By

Safaa Ebrahem Mohammed Mohammed B.Sc.2006

Supervised By

Ass. Prof. Dr. Nadia Iskandar Abdel Sayed
Assistant prof. of Organic Chemistry

Dr. Fagr Abd-Elsayed Ismail YounesLecturer of Organic Chemistry

Cairo, 2010

ABSTRACT

The enaminones 2-oxo-4-(phenylamino)pent-3-ene **1**, 4-[2-(1-methyl-3-oxo-but-1-enylamino) ethylamino]-pent-3-en-2-one **2** and 5,5-dimethyl-3-(phenylamino)cyclohex-2-enone **3** were prepared under solvent free condition using ceric ammonium nitrate (CAN) as catalyst.

The reactivates of **1**, **2** and **3** towards different reagents were studied and heterocycles and polyfunctionally heterocyclic compounds were obtained

The newly synthesized compounds was elucidated by elemental analysis and spectral data (IR, ¹HNMR, MS).

The selected tested compounds showed a bacterial activity while all of them did not show any activity toward fungi.

Acknowledgment

The author would like to express her full respectful thanks to Dr.Nadia Iskandar Abdel Sayed ,Assistant professor of Organic Chemistry ,Faculty of Women for Arts, Science and Education ,Ain Shams University for suggesting the title of the thesis, guiding through all stages of the work , teaching theoretical and practical skills in organic chemistry and being a great help and support from the beginning to the end of the work.

The author wishes also to express her respectful thanks to Dr. fagr Abd-Elsayed Ismail, Lecturer of Organic Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University for her guidance, kind supervision and valuable support during the course of this work including reviewing the dissertation as well.

Last and certainly not least I would like to thank my family. They have encouraged me through my life, made a great impact on my personality, thanks for teaching me how to exist.

Deepest gratitude for Faculty of Women for Arts, Science and Education, for Prof. Dr. Samia Mokhtar Head of Chemistry Department for her encouragement and support.

Safaa Ebrahem

CONTENTS

Pa_{s}	ge
ABSTRACT	-
AIM OF THE WORK	-
SUMMARY	i
INTRODUCTION	1
I-Recent Development in the Chemistry of Enaminones	1
1-Introduction	1
2-Synthetic approaches to enaminones	1
2.1.Condensation reactions	2
2.1.0.Condensation of active methyl and methylene ketones v	vith
dimethylformamide dimethylacetal.	2
2.1.1. Reaction of amines with aldehydes and ketones	8
2.1.2. Acylation of enamines	19
2.1.3. Reaction with vinyl halides	20
2.1.4. Condensation with trihalomethyl ethylene	21
2.1.5. Condensation of vinyl ethers and vinyl thioethers with amines	21
2.1.6. Reaction of active methylenes with Vilsmeier reagent	21
2.1.7. Amination of α - β -unsaturated ketones	22
2.2 Addition reactions	22
2.3.Cleavage of heterocycles	24
3. Chemical reactivity of enaminones	26
3.1. Introduction	26
3.2. Reactivity toward electrophilic reagent	26
3.2.1.Carbon electrophiles	26

3.2.2. Nitrogen electrophiles	32
3.2.3.Halogen.electrophiles	34
3.2.4.Sulpher electrophiles	35
3.3. Reactivity toward nucleophilic reagents	36
3.3.1. Carbon nucleophiles	36
3.3.2. Nitrogen nucleophiles.	45
3.3.3. Oxygen nucleophiles	55
3.3.4. Sulfur nucleophiles.	55
4. Reduction and oxidation.	56
5. Reaction optimization for C-H functionalization of enaminones.	57
6. Cycloadditions.	57
7.Cyclization of β-enaminones.	58
8.Photochemical reactions of enaminones	58
9. Biological activity of enaminones.	59
10. Antibacterial activity of enaminones.	59
EXPERIMENTAL & RESULTS	61
DISCUSSION	154
ANTIMICROBIAL ACTIVITY	170
REFERENCES	174
ARABIC SUMMARY	-

______الملخص العربي

ملخص البحث باللغة العربية

الإنامينونات 1 و 2 و 3 تم تحضير هم بإستعمال العامل الحفاز سيرك أمونيم نيترات وبدون وجود اي مذيب في وسط التفاعل.

فبتفاعل مركب 2-أوكسو-4-فينيل امينوبنتا -3-إين 1 مع المالونونيتريل في وجود الداى ميثيل فورماميد القاعدي أعطى مشتق 2و 4-دايناميد 7 الذى بتفاعله مع أنهيدريد الخليك فى وجود حامض الهيدزوكلوريك أعطى مشتق 1و2-داى هيدروبيريدين 8.

أيضا تفاعل مركب 1 مع ايثيل سيانو اسيتات في البيريدين وأعطى مشتق البيران 11. و بتفاعل مركب 1 مع او 2و 4 - تريازول امين في الايثانول أعطى مشتق تريازوليل بنتينون 12 الذي تحولق وأعطى مشتق تريازوليل بيريميدين الملتحم الحلقة 13.

وبتفاعل 1 مع الهيدر ازين هيدرات الاحادي أعطى مشتق البير ازول الملتحم الحلقه 15

وبتفاعل 1 مع حامض الهيبيوريك في وجود انهيدريد الخليك أعطى مشتق البيرانون 18.

وبتفاعل الانامينون 4-(2-(1-ميثيل-3-اوكسو- بيوت-1-اينيل امينو)-1 إيثيل امينو-بنت-2-اين-2-

اون 2 مع المركبات التي تحتوى على مجموعة الميثلين النشطة سواء باستخدام كميات متساوية أو باستخدام 1 : 2 مول (اينامينون: كاشف المثيلين النشط)أعطى ناتج واحد فقط بنسبة (إنامينون: كاشف المثيلين النشط).

وبتفاعل 2 مع المالونو نيتريل أعطى مشتق الدايناميد 21 الذي بدوره يتحولق بغلية مع انهيدريد الخليك في وجود حامض الهيدروكلوريك الى مشتق الداي هيدروبيريدنون 22.

وبنفس الطريقة تفاعل 2 مع السيانو اسيتاميد اومع سيانواسيتانيليد أومع الايثيل أسيتو أسيتات أومع الايثيل سيانواسيتات أعطى المركبات 21و22&22و28&20و00

وبتفاعل مركب 2 مع الهيدروكسيل امين هيدروكلوريد أعطى ناتجين مشتق البيرازوليل إيثيل أمين بنتينون 34 ومشتق البيرازوليل إيثيل بيرازول 35.

وبتفاعل مركب الإنامينون 5،5-داى ميثيل -3-(فينيل أمينو) سيكلو هكسا-2-إينون $\mathbf{6}$ مع كل من الدياز ونيم هيتير وسيكليك أمين (3-أمينو 1و 2و4-ترياز ول $\mathbf{6}$ -أمينو —تيتراز ول و $\mathbf{6}$ -أمينو بنز إيميداز ول) يعطى المركبات $\mathbf{6}$ 0 و $\mathbf{6}$ 0 و $\mathbf{6}$ 0 و $\mathbf{6}$ 0 على الترتيب .

تفاعل الانامينون 3 مع المالونونيتريل عن طريق 1و4-الاضافه لميكل الى أعطي مشتق مالونونيتريل سيكلو هكسانون 49 وبتفاعل الأخير مع اليوريا أعطى مشتق إيمينوبيريمدينون سيكلو هكسانون 53. وقد تم إثبات التراكيب البنائية لجميع المركبات الناتجه إستنادا علي كل من التحاليل الكمية الدقيقة والتحاليل الطيفية.

الملخص العربي

وقد تم دراسة التأثير البيولوجي لبعض المركبات المختارة ضد أنواع من البكتيريا سالبة الجرام والبكتيريا موجبة الجرام والفطريات وقد وجد ان هذه المركبات أظهرت نشاط بكتيرى بينما ليس لها نشاط تجاه الفطريات وعلى ذلك نستطيع ان نستخلص ان المركبات الجديدة المحضرة لها اهمية بيولوجيه مقارنة بالدليل تيترا سيكلين.

I-Recent Development in the Chemistry of Enaminones

1-Introduction

Enaminones, being bioactive compounds, are used as a key intermediate in the synthesis of various heterocyclic compounds, naturally occuring alkaloids and polydentate reagents it has also been found that this kind of moiety is useful for the synthesis of those compounds that possess antiepileptic, molluscicidal and larvicidal activities (*Kidwai, M. et al., 2009; Abass, M. and Mostafa, B.B.2005; El-Shennawy, A.M.2007 et al., and Martinez, J.C.G. et al., 2006*).

Enaminones derivatives have attracted a great deal of interest due to their biological activities such as anti HIV(Mamos, D. et al.,1990, C.A. 1989), antitumor (Kobayashi, G. et al., C.A. 1978), anti-hypertensive (Ferrarine, P.L. et al., 1999), anti-allergic (Soliman, F.S. et al., 1977), anti-inflammatory (Ram, V.J. et al., 1999), anti-bacterial (Fujisawa, W. 1988; C.A. 1989) and anti-shock activities (Drown, R.E. et al., 1964).

The term enaminones is related to compounds that contain the conjugate system N-C=C-C=O(*Ivanov*, *I. et al.*, 2007 and Mahmud, *T. et al.*, 2009).

Enaminones have two electron-deficient centres at C-1 and C-3, while the C-2 and amino functions are electron rich. They can thus react with both electrophiles and nucleophiles (Figure 1)(Stanovnik, B.and Svete, J. 2004 and Sheibani, H. et al., 2006).

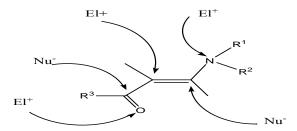


Figure 1

Enaminones are very stable compounds and can be easily prepared, starting from cheap and easily available starting materials.

2-Synthetic approaches to enaminones

2.1. Condensation reactions

2.1.0 Condensation of active methyl and methylene ketones with dimethylformamide dimethyleacetal

Active methylene ketones 1 condensed readily with dialkylamino dimethyl acetals 2 to yield the enaminones 3.

$$R^1$$
 CH_2R^2
+ $(MeO)_2C$
 NR_2^4
 R^3
 R^3
 NR_2^4
aminopentenone derivatives

In general, enaminone formation had been conducted in refluxing aromatic hydrocarbons, (Lue, P.and Greenhill, J.V.,1997;Al-Omran, F.et al., 1998; Caubere, C.et al., 1994;Reis, L.V.et al.,1994;Selic, L.et al.,1997and Svete, J. et al.,1997), ethanol, (Zupancic, S. et al., 2001) ether, (Hegde, S.G.and Jone,C.R., 1993), under nitrogen, (San Martin, R.et al., 1994) toluene, (Reis, L.V. et al., 1994), DMF(Sorsak, G.et al., 1998) or without solvent (Reidlinger, C. et al.,1998 and Al-Omran, F. et al.,2001). Both cyclic and acyclic ketones condense readily under these conditions.

The condensation of cyclohexanone **4** with N, N-dimethylformamide dimethyl acetal, for example, (DMF DMA) afforded the enaminone **5** in 47 % yield (*Schuda*, *P.F. et al.*, *1986*).

Recently, the enaminones **8** and **9a–c** could be obtained in 73 and 82% yield, respectively, via the condensation of **6** and **7a–c** with DMF DMA in xylene (*Al-Omran*, *F. et al.*, *1998 and Al-Omran*, *F. 2000*).

Introduction

AcHN COMe

Ac NHCH₂COMe

Benzo[
$$d$$
][1,2,3]triazole derivatives

AcHN COMe

AcHN COMe

AcHN COMe

NMe₂

NMe₂

NMe₂

NMe₂

NMe₂

Senzo[d][1,2,3]triazole derivatives

N-Acetylglycine upon reflux with dimethylformamide in the presence of phosphorus trichloride or treatment with N,N-dicyclohexyldicarbodiimide (DCC) and DMF DMA afforded the cyclic enaminone 10, which on methanolysis in the presence of potassium carbonate afforded the enamino ester 11 in 78% yield (*Kralj,L. et al., 1997*).

Treatment of 2- acetylcyclohexanone **12** with (DMF DMA) in refluxing xylene yielded enaminone **13** in 67% yield (*Al-Omran,F. et al., 2001*).

13

The enaminones **15a,b** were synthesized in 60-70% yield via condensation of **14a,b** with DMF DMA in refluxing xylene(*Al-Saleh,B. et al., 2002*).

-Introduction

The condensation of compound 16a-f with DMF DMA yielded the enaminone 17a-f (*El-Taweel*, .M.A.A.and Elnagdi, M.H. 2001and Zhang, S.Q. et al., 2002).

Reacting 1, 3-diphenyl-propan-2-one 18 with equimolecular amount of DMF DMA afforded the enaminones 19 in absence of solvent, this when reacted with another equimolecular amount of DMF DMA afforded the dienaminone 20(Hook, J. M. and Mander, L.N. 1980; Almazroa, S. et al., 2004 and Abdel-Khalik, M.M.et al., 2004).

Compound **21** condensed with DMF DMA to afford the enaminone **22** in 75% yield (*Ghozlan,S.A.S. et al., 2005*).

-Introduction

Both compounds 23 and 24 condensed readily with DMF DMA in xylene to afford the enaminones 25, 26(Abdel-Megid, M. et al., 2002)

The reaction of active methylene ketones of general formula 27(where x is electron withdrawing group or hydrogen) readily condensed with DMF DMA to yield enaminones 28(Al-Zaydi,K.M. et al., 2000 and Toche, .B. et al., 1998).

Introduction

Meldrum acid 29 condensed with DMF DMA to yield the enaminone 30.Acetaldehyde 31 also condensed with DMF DMA to yield 32(Blacke, A.J. et al., 1989; Hickson, C.L. et al., 1986 and Mcnab, H. and Monhan, L.C., 1988).

5-((dimethylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione

32

Enaminones **34** could be obtained in 70-80% yield via refluxing a mixture of methyl ketones **33** with little excess of DMF DMA (1:1.2 moles) for six hours in absence of solvent. (*Hassanien*, *A. A. et al.*, 2003).

Attempted preparation of 34c, d by refluxing the respective methyl ketone with DMF- DMA in refluxing acetic acid (Al-Mousawi, S.M. et al., 1999 and Almazroa, S. et al., 2004) or in toluene solution (Abdel-Khalik, M.M. et al., 2000).

The enaminones **34c**, **e**, **g** reacted with the aminopyrazole derivative **35** to yield the enaminones **36c**, **e**, **g** (*Almazroa*, *S. et al.*, **2004**).

The fungicidal dehydroacetic acid 37 condensed with N,N-dimethylacetamide dimethyl acetal yielded 72% of the enaminone 38(Lowe,

W. 1978 and Lowe, W. et al., 1994).

The cyclic amide acetals 39 condensed with aryl methyl ketones such as 40 yielding the Pyrrolidinoenaminones 41(Ahuja, P. et al., 1983; Dannhardt, V., G.et al., 1987, 1997 and Dannhardt, V.G. and Bauer, A., 1996).

Azolylmethylketones **42-45** condensed with DMF DMA to yield enaminones **46-49.**This condensation has been achieved in a microwave oven within few minutes instead of several hours in refluxing xylene or in absence of solvent(*Al-Saleh*, *B.et al.*, 2004, 2003, 2002, 2001