تأثير سمك السرج وأبعاد الموصل على مقاومة الكسر للأستعاضات السنية الجزئية المثبتة المصنوعة من الراتنج المقوى بالألياف

رسالة مقدمة إلى
كلية طب الفم والأسنان- جامعة القاهرة
كجزء من مقومات الحصول على درجة الماجستير
(الاستعاضات السنية المثبتة)

من

الطبيب: مشهور وليد مراد بكالوريوس طب وجراحة الفم والأسنان(جامعة 6 أكتوبر)

> كلية طب الفم والأسنان جامعة القاهرة 2009

إشراف

الدكتورة: أميمه صلاح الدين الحلاوي

أستاذ بقسم التركيبات الثابتة كلية طب الفم والأسنان جامعة القاهرة

الدكتورة : جيلان فؤاد الجندي

أستاذ مساعد بقسم التركيبات الثابتة كلية طب الفم والأسنان جامعة القاهرة

EFFECT OF PONTIC HEIGHT AND CONNECTOR DIMENSION

ON FRACTURE RESISTANCE OF FIBER REINFORCED COMPOSITE FIXED PARTIAL DENTURE

Thesis Submitted to the Faculty of Oral and Dental Medicine, Cairo University, in Partial Fulfillment of the Requirements of the Master's Degree in Restorative Dentistry (Fixed Prosthodontics)

By

Mashhour Waleed Murad

B.D.S (October 6 University)

Faculty of Oral and Dental Medicine

Cairo University

2009

SUPERVISORS

Dr. Omaima S. El. Mahalawi

Professor of Fixed Prosthodontics

Faculty of Oral and Dental Medicine

Cairo University

Dr. Jylan Foua'd El-Guindy

Associate Professor of Fixed Prosthodontics

Faculty of Oral and Dental Medicine

Cairo University

بسم الله الرحمن الرحيم

" وما أوتيتم من العلم إلا قليلا "

[سورة الإسراء: الآية ٨٥]

DEDICATION

This work is gratefully dedicated to:

MYFAMILY

Mother, Father, brother (Yaser) and Sisters

My FRIENDS

Safa, Belal, Obaida, Khalil, Kamal, Islam, Abdullah

<u>ACKNOWLEDGEMENT</u>

First and Foremost, I fell indebted to **ALLAH**, the most kind and merciful who allowed me to accomplished this work.

I would like to express my deep appreciation and gratitude to my Supervisor **Prof. Dr. Omaima S. El-Mahalawi,** Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her incredible help, great care, stimulating suggestions and encouragement helped me in all the time of research.

I am greatly indebted to my a Co-Supervisor **Dr. Jylan Fouad El-Guindy,** Associate Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her valuable advices, continuous support, great help, kindness and useful remarks during my work.

Special thanks to **Dr. Mona Attia El- Agroudi,** Associate Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her guidance and scientific documentation support.

My thanks are also extended to **Dr. Tarek S. Mursi,** Associate Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Ain Shams University.

I would not forget to thank the staff members of Fixed Prosthodontics Department, Cairo University for all their help and cooperation during my research work.

LIST OF CONTENTS

	Page Number
Introduction	. 1-2
Review of Literature	3-28
Aim of Study	29
Materials and Methods	30-62
Results	63-76
Discussions	77-85
Summary	86-87
Conclusion	88
References	89-102
Arabic Summary	

LIST OF TABLES

Table No.	Title	Page No.
Table (1)	Materials used in this study	31
Table (2)	Classification of the samples	37
Table (3)	The means, standard deviation (SD) values and results of Student's t-test for the comparison between mean fracture resistances with the two connector dimensions	64
Table (4)	The means, standard deviation (SD) values and results of Student's t-test for the comparison between mean fracture resistances with the two pontic heights.	66
Table (5)	The means, SD values and results of ANOVA and Tukey's tests for the comparison between different interactions of connector dimension/pontic height	68
Table (6)	Materials composition	76

LIST OF FIGURES

Figure No.	Title	Pag e No.
Figure 1	SR Adoro composite veneering system tube	32
Figure 2	Vectris Fiber reinforced composite (FRC).	32
Figure 3	Variolink II resin cement with monobond-S coupling agent	33
Figure 4	Stainless steel dies	35
Figure 5	Stainless steel dies molded with pink wax	39
Figure 6	Silicon duplicating material	39
Figure 7	Stainless steel model boxed with red wax and received duplicating silicon material	40
Figure 8	Working cast after pouring	40
Figure 9	Composite bridge	43

Figure 10	Buccolingual dimension of the connector 4 mm as measured by using a caliper	43
Figure 11	Occlusogingival dimension of the connector 3 mm as measured by using a caliper	44
Figure 12	Occlusogingival dimension of the connector 4 mm as measured by using a caliper	44
Figure 13	Occlusogingival height of the pontic 5.8 mm as measured by using a caliper	45
Figure 14	Occlusogingival height of the pontic 4.3 mm as measured by using a caliper	45
Figure 15	Silicon matrix formed around the composite bridge	46
Figure 16	Silicon matrix after removal of the composite bridge	46
Figure 17	Vectris "Pontic" placed between and over dies	47
Figure 18	Vectris VS 1 curing unit	47
Figure 19	Uncured Vectris framework	48

Figure 20	Cured Vectris framework	48
Figure 21	Composite bridge after added composite layer covered by template	51
Figure 22	Targis quick light polymerizing-unit with Targis power oven	51
Figure 23	Vectris/SR Adoro Bridge after polishing and finishing	52
Figure 24	Epoxy resin dies	54
Figure 25	Loading device	56
Figure 26	Cementation of the bridge using the loading device	56
Figure 27	Lloyd universal testing machine	58
Figure 28	Fracture load testing	58
Figure 29	Fractured sample after fracture resistance testing	59

Figure 30	Gold sputtering device	61
Figure 31	Samples after gold sputtering	61
Figure 32	The Scanning Electron Microscope device	62
Figure 33	Mean fracture resistance comparison between two different connector dimensions	65
Figure 34	Mean fracture resistance comparison between two different pontic heights	67
Figure 35	Mean fracture resistance comparison between different interactions	69
Figure 36	At a magnification of (X300), the SEM revealed a several fibers bundles consisting a mesh	71
Figure 37	At a magnification of (X140),the SEM revealed vertical fracture line in veneering material	71
Figure 38	At a magnification of (X150),the SEM revealed horizontal line fracture in veneering material	72

Figure 39	At a magnification of (X130),the SEM revealed broken Vectris fibers	72
Figure 40	At a magnification of (X75), the SEM revealed fibers scatterd in different direction	73
Figure 41	At a magnification of (X250),the SEM revealed fracture in veneering material and broken fibers	73
Figure 42	At a magnification of (X2000),the SEM revealed detached between fibers and resin matrix	74
Figure 43	Spectrum 1 which is the EDEX analysis performed	75
Figure 44	Elements of materials in weight percent	76

INTRODUCTION

Most cultures throughout centuries have acknowledged teeth as an integral facial structure for health, youth, beauty and dignity. Unexpected loss of tooth structure and, particularly, missing teeth creates not only physical and functional problems, but often psychological and social disturbances as well. The treatment alternatives for the replacement of a single missing tooth have expanded during recent times, so that the choice of a proper treatment plan is no longer a simple decision.

Treatment options to replace single missing teeth include the Removable Partial Dentures, Fixed Partial Dentures, Resin-Bonded Fixed Partial Dentures and implant supported prothesis. In making the proper choice of the most appropriate restoration type and material, one should consider both patient's priorities and scientific objectives.

During the last decade, the demand for aesthetic non-metallic, highly biocompatible dental restorative materials has increased markedly. Fiber Reinforced Composites (FRC) were introduced some years ago as an alternative to full ceramic and porcelain fused to metal in the fabrication of single crowns, bridges, inlays, and onlays. FRC provide good aesthetics due to the translucency which is similar to natural tooth structure. They also exhibit high flexural strength which renders them less susceptible to fracture.

Additionally, their lower hardness prevents the excessive wear of the opposing natural dentition. There are several FRC systems with differences in the type of fibers and their layering laboratory preparation.