EFFECT OF SOME HEAVY METALS IN MOLASSES MEDIUM ON THE PRODUCED BAKER'S YEAST PROPERTIES

By

GOMAA NOUR EL-DIEN ABD EL-RAHMAN EID

B.Sc. Agric. Sci. (Food Technology), Fac. Agric., Cairo Univ., 2002

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Food Technology)

Department of Food Technology
Faculty of Agriculture
Cairo University
EGYPT

2010

APPROVAL SHEET

EFFECT OF SOME HEAVY METALS IN MOLASSES MEDIUM ON THE PRODUCED BAKER'S YEAST PROPERTIES

M.Sc. Thesis
In
Agric. Sci. (Food Technology)

By

GOMAA NOUR EL-DIEN ABD EL-RAHMAN EID

B.Sc. Agric. Sci. (Food Technology), Fac. Agric., Cairo Univ., 2002

APPROVAL COMMITTEE

Dr. AHMED YOUSEF GIBRIEL Professor of Food Technology, Fac. Agric., Ain Shams University	
Dr. AHMED MAHMOUD ALIAN	
Professor of Food Technology, Fac. Agric., Cairo University	
Dr. AHMED MOHAMED IHAB	
Assistant Professor of Food Technology, Fac. Agric., Cairo	University
Dr. NAGWA MOHAMED AHMED EL-SHIM Professor of Food Technology, Fac. Agric., Cairo Universit	
	Date: / /

SUPERVISION SHEET

EFFECT OF SOME HEAVY METALS IN MOLASSES MEDIUM ON THE PRODUCED BAKER'S YEAST PROPERTIES

M.Sc. Thesis
In
Agric. Sci. (Food Technology)

By

GOMAA NOUR EL-DIEN ABD EL-RAHMAN EID B.Sc. Agric. Sci. (Food Technology), Fac. Agric., Cairo Univ., 2002

SUPERVISION COMMITTEE

Dr. NAGWA MOHAMED AHMED EL-SHIMI Professor of Food Technology, Fac. Agric., Cairo University

Dr. AHMED MOHAMED IHAB
Assistant Professor of Food Technology, Fac. Agric., Cairo University

Dr. MAGDY MOHEB EL-DIEN MOHAMED SAAD Researcher Professor of Food Toxicology, NRC, Dokki, Egypt Name of Candidate: Gomaa Nour El-Dien Abd El-Rahman Eid Degree: M.Sc. Title of Thesis: Effect of Some Heavy Metals in Molasses Medium on The

Produced Baker's Yeast Properties

Supervisors: Dr. Nagwa Mohamed Ahmed El-Shimi

Dr. Ahmed Mohamed Ihab

Dr. Magdy Moheb El-Dien Mohamed Saad.

Department: Food Technology. **Approval:** 23 / 9 /2010

ABSTRACT

This study aimed to determine the physicochemical properties and heavy metals content of Deshna, Kous, Armant, Edfu, Gerga and Naga Hammady molasses, as well as crude molasses, treated molasses and baker's yeast samples collected seasonally from autumn 2006 to summer 2007 from El-Hawmdia for Chemicals Factory. Also, to study the effect of Cu, Cu with Ca, Mn, Pb and Cd on baker's yeast properties and their adsorption by yeast. Finally, study the effect of molasses treatment by different acids on removal of heavy metals, baker's yeast properties and adsorption of heavy metals by yeast.

The location (source of molasses) and season were found to have an effect on the physicochemical properties and heavy metals content of molasses samples. The molasses collected at winter season recorded the highest values of density, Brix, total solids, total sugars, non fermentable sugars, fermentable sugars and pH, while molasses collected at autumn season recorded the maximum levels of ash, moisture and heavy metals content.

Density, Brix, total solids, non fermentable sugars, ash and pH values decreased in all treated molasses samples compared to untreated ones, while, total sugars, fermentable sugars and moisture contents were increased.

Baker's yeast collected at winter season recorded the highest values of total solids, protein, total viable cells and fermentation power, while autumn samples had the maximum levels of ash, moisture and heavy metals content.

Increasing the concentrations of Cu up to 2 ppm or Mn up to 20 ppm, increased the baker's yeast properties, while higher concentrations of both elements resulted in a negative effect. Addition of calcium in growth medium had a protective effect against copper toxicity. On the other hand, the presence of Pb or Cd in growth medium decreased baker's yeast properties, this effect was increased as the Pb or Cd increased. In addition, metals uptake by yeast was increased by increasing of metals concentration in growth medium, while, adsorption percent was decreased.

Treatment of crude molasses by sulfuric acid gave the highest removal of heavy metals compared with other acids treatments. Also, the produced baker's yeast on sulfuric treated molasses gave better results regarding biomass yield, protein content, total viable cells, fermentation power and low adsorption for heavy metals.

Key words: Baker's yeast, molasses, heavy metals, fermentation power, adsorption.

DEDICATION

I would like to dedicate this work to my FATHER and my MOTHER for their support and help for me through my life and my study, as well as to my dear brothers and sister for their support in all my life. Also, I would like to dedicate this work to my wife and my sweetheart children, Mostafa and Sara, for their patience and help to complete my work. Finally, I would like to dedicate this work to my friends for their support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

First of all thanks to Allah, who blessed me with his unlimited graces.

I wish to express my thanks, special gratitude to **Dr. Nagwa Mohamed Ahmed El-Shimi** Prof. of Food Technology, Faculty of Agriculture, Cairo University, for her supervision, kind assistance, guidance and encouragement throughout study. Without her assistance, none of this work would have been possible.

I wish to express my thanks, deepest gratitude to **Dr. Magdy Moheb El-Dien Mohamed Saad** Prof. of Food Toxicology, National Research Centre, for his moral support and guidance through revision of the manuscript of this thesis and his effort provided to achieve this work.

My deep thanks to **Dr. Ahmed Mohamed Ihab** Assistant Prof. of Food Technology, Faculty of Agriculture, Cairo University, for supervising the whole work, Special thanks to **Dr. Mahmoud Abdel Monaim Mostafa Abou Donia** Prof. of food Toxicology, National Research Centre, for supervising the whole work, providing facilities, valuable suggestion, moral support, encouragement and plentiful advice.

I would like to express my sincere appreciation and gratitude to Mr. Mohamed Hmad and Mr. Khalid Dardir General Managers of yeast production, El-Hawmdia for Chemicals Factory (Sugar and Integrated Industry Company), for their valuable help and moral support that were vital to my success.

Grateful appreciation is also extended to all staff members of Food Toxicology lab, Food toxins and contaminants Department, National Research Centre, Dokki, Egypt.

اسم الطالب: جمعه نور الدين عبد الرحمن عيد الماجستير

عنوان الرسالة: تأثير بعض العناصر المعدنية الثقيلة في بيئة المولاس على خصائص خميرة الخباز المنتحة

المشرفون: دكتور: نجوى محمد أحمد الشيمى

دكتور : أحمد محمد أهاب

دكتور: مجدى محب الدين محمد سعد

تاريخ منح الدرجة: ٢٣ / ٩ /٢٠١٠

قسم: الصناعات الغذائية

المستخلص العربى

تهدف الدراسة إلى تقدير الخصائص الفيزوكيميائية ومحتوى العناصر المعدنية الثقيلة للمولاس الوارد من دشنا، قوص، أرمنت، إدفو، جرجا ونجع حمادى وكذلك المولاس الخام، المولاس المعالج وخميرة الخباز من خلال تجميع عينات موسمية في الفترة من خريف ٢٠٠٦ حتى صيف ٢٠٠٧ من مصانع الكيماويات بالحوامدية. بالإضافة إلى دراسة تأثير النحاس، النحاس مع الكالسيوم، المنجنيز، الرصاص والكادميوم على خصائص خميرة الخباز وإدمصاص تلك العناصر بواسطة الخميرة. وأخيراً دراسة تأثير معالجة المولاس بالأحماض المختلفة على إزالة العناصر المعدنية الثقيلة، خصائص خميرة الخباز وإدمصاص العناصر المعدنية الثقيلة بواسطة الخميرة. وكان أهم النتائج المتحصل عليها ما يلى:

مكان أومصدر المولاس والموسم له تأثير على الخصائص الفيزوكيميائية ومحتوى العناصر المعدنية الثقيلة لعينات المولاس. وقد سجل المولاس الذى تم تجميعه خلال فصل الشتاء أعلى قيم للكثافة، البركس، المواد الصلبة، السكريات الكلية، السكريات الغير قابلة للتخمر، السكريات القابلة للتخمر والـ pH، بينما سجل المولاس الذى تم تجميعه خلال فصل الخريف أعلى قيم للرماد والرطوبة ومحتوى العناصر المعدنية الثقيلة.

حدث إنخفاض لقيم الكثافة، البركس، المواد الصلبة، السكريات الغير قابلة للتخمر، الرماد والـ pH لجميع عينات المولاس المعالج مقارنة بالمولاس الغير معالج، بينما زادت قيم السكريات الكلية، السكريات القابلة للتخمر ومحتوى الرطوبة.

سُجلت خُميرة الخباز المجمعة خلال فصل الشّتاء أعلى قيم للمواد الصلبة، البروتين، عدد الخلايا الحية وقوة التخمير، بينما سجلت عينات الخريف أعلى قيم للرماد، الرطوبة ومحتوى العناصر المعدنية الثقيلة.

أدى زيادة تركيز النحاس لـ ٢ جزء فى المليون أو المنجنيز لـ ٢٠ جزء فى المليون إلى زيادة خصائص خميرة الخباز، بينما أدت التركيزات العالية لكلا العنصرين لحدوث تأثيرات سلبية. إضافة الكالسيوم إلى بيئة النمو لها تأثير وقائى لسمية النحاس. وعلى النقيض أدى وجود الرصاص أو الكادميوم فى بيئة النمو إلى إنخفاض خصائص خميرة الخباز وأزداد هذا التأثير بزيادة تركيز الرصاص أو الكادميوم. هذا بالإضافة إلى زيادة إدمصاص المعادن بواسطة الخميرة بزيادة تركيز المعادن فى بيئة النمو، بينما إنخفضت النسبة المئوية للإدمصاص.

أعطت معالجة المولاس الخام بحامض الكبريتيك أعلى إزالة للعناصر المعدنية الثقيلة مقارنة بالمعالجة بالإحماض الأخرى. أيضاً أعطت خميرة الخباز المنتجة على المولاس المعالج بحامض الكبريتيك أفضل نتائج من حيث ناتج الخميرة، محتوى البروتين، عدد الخلايا الحية، قوة التخمير وأقل إدمصاص للعناصر المعدنية الثقيلة.

الكلمات الدالة: خميرة الخباز، المولاس، العناصر المعدنية الثقيلة، قوة التخمير، الإدمصاص.

تأثير بعض العناصر المعدنية الثقيلة في بيئة المولاس على خصائص خميرة الخباز المنتجة

رسالة الماجستير في العلوم الزراعية (الصناعات الغذائية)

مقدمة من

جمعه نور الدين عبد الرحمن عيد بكالوريوس في العلوم الزراعية (صناعات غذائية)- كلية الزراعة- جامعة القاهرة، ٢٠٠٢

لجنة الإشراف

دكتور/ نجوى محمد أحمد الشيمى أستاذ الصناعات الغذائية - كلية الزراعة - جامعة القاهرة

دكتور/ أحمد محمد أهاب أستاذ مساعد الصناعات الغذائية - كلية الزراعة - جامعة القاهرة

دكتور/ مجدى محب الدين محمد سعد أستاذ باحث سموم الأغذية - المركز القومي للبحوث - الدقي - مصر

تأثير بعض العناصر المعدنية الثقيلة في بيئة المولاس على خصائص خميرة الخباز المنتجة

رسالة الماجستير في العلوم الزراعية (الصناعات الغذائية)

مقدمة من

جمعه نور الدين عبد الرحمن عيد بكالوريوس في العلوم الزراعية (صناعات غذائية) - كلية الزراعة – جامعة القاهرة، ٢٠٠٢

لجنة الحكم
دكتور / أحمد يوسف جبريل أستاذ الصناعات الغذائية - كلية الزراعة - جامعة عين شمس
دكتور / أحمد محمود عليان أستاذ الصناعات الغذائية – كلية الزراعة – جامعة القاهرة
دكتور / أحمد محمد أهاب أستاذ مساعد الصناعات الغذائية – كلية الزراعة – جامعة القاهرة
دكتور / نجوى محمد أحمد الشيمى
التاريخ / /

تأثير بعض العناصر المعدنية الثقيلة في بيئة المولاس على خصائص خميرة الخباز المنتجة

رسالة مقدمة من

جمعه نور الدين عبد الرحمن عيد بكالوريوس في العلوم الزراعية (صناعات غذائية) - كلية الزراعة – جامعة القاهرة، ٢٠٠٢

للحصول على درجة

الماجستير

في

العلوم الزراعية (الصناعات الغذائية)

قســـم الصناعات الغذائية كليــة الزراعــة جامعـة القاهرة مصــر

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Molasses	5
a. Types of molasses	5
b. Usage of molasses	7
c. Chemical constituents of molasses	7
2. Baker's yeast	14
a. Chemical constituents of baker's yeast	16
b. Fermentation power of baker's yeast	19
c. Nutritive value of baker's yeast	20
3. Factors affecting baker's yeast production	22
a. Initial pH value	22
b. Incubation temperature	24
c. Available O ₂	26
d. Heavy metals	27
4. Occurrence of heavy metals in molasses	35
5. Adsorption of heavy metals by S. cerevisiae	38
6. The main factors affecting heavy metal adsorption	38
a. Fermentation media	39
b. Fermentation time	41
c. pH value	42
d. Temperature	44
e. Cell structure and age	44
f. Type and concentration of metals	46
g. Competitive metal uptake	47
7. The potential risk of heavy metals hazards	48
MATERIALS AND METHODS	55
Materials	55
1 Vanct strain	55

	Page
2. Media	55
3. Sugarcane molasses	56
4. Baker's yeast	56
5. Wheat flour	56
6. Sodium chloride salt	57
Methods	57
1. Collection of samples	57
a. Sugarcane molasses samples	57
b. Baker's yeast samples	58
2. Cultivation of yeast	58
a. Inoculum preparation	58
b. Cultivation	58
c. Effect of heavy metals	58
d. Effect of calcium addition on the copper toxicity for baker's yeast	59
3. Clarification of molasses by different acids	59
4. Effect of molasses acid treatments on produced baker's	60
yeast properties	UU
5. Analytical methods	60
a. Physico-chemical analysis	60
b. Microbiological analysis	64
6. Statistical analysis	64
RESULTS AND DISCUSSION	65
1. Physicochemical properties of crude molasses	65
2. Physicochemical properties of mixed crude and treated molasses	76
3. Physicochemical properties of baker's yeast	83
a. Moisture, total solids, protein and ash content	83
b. Total viable cells and fermentation power	86
4. Heavy metals content of the crude molasses	87
5. Heavy metals content of mixed crude and treated molasses.	98

6. Heavy metals content of baker's yeast
7. Effect of heavy metals on baker's yeast properties
a. Effect of copper concentration
b. Effect of copper in the presence of calcium
c. Effect of manganese concentration
d. Effect of lead concentration
e. Effect of cadmium concentration
8. Adsorption of heavy metals by baker's yeast
a. Adsorption of copper
b. Adsorption of copper in the presence of calcium
c. Adsorption of manganese
d. Adsorption of lead
e. Adsorption of cadmium
9. Treatment of crude molasses by different acids
a. Effect of different acids treatments on heavy metals content of the treated molasses
b. Effect of molasses treatment with different acids on properties of the produced baker's yeast
c. Effect of molasses treatment with different acids on heavy metals adsorption by the produced baker's yeast.
SUMMARY
REFERENCES
APPENDIX
ARABIC SUMMARY

LISTT OF TABLES

No.	Title	Page
1.	Concentrations of different heavy metals in molasses samples collected from different factories.	37
2.	Concentrations of metals in baker's yeast growth medium	59
3.	Physicochemical properties of crude molasses collected from different locations at autumn season (2006)	67
4.	Physicochemical properties of crude molasses collected from different locations at winter season (2007)	69
5.	Physicochemical properties of crude molasses collected from different locations at spring season (2007)	71
6.	Physicochemical properties of crude molasses collected from different locations at summer season (2007)	73
7.	Physicochemical properties of collected crude molasses from different locations at different seasons (2006 - 2007) as compared with Egyptian Standard	74
8.	Physicochemical properties of crude and treated molasses at different seasons	77
9.	Moisture, total solids, protein and ash contents (%) of baker's yeast produced at different seasons	84
10.	Total viable cells and fermentation power of baker's yeast produced at different seasons	87
11.	Heavy metals of crude molasses collected from different locations at autumn season (2006)	89

12.	Heavy metals of crude molasses collected from different locations at winter season (2007)
13.	Heavy metals of crude molasses collected from different locations at spring season (2007)
14.	Heavy metals of crude molasses collected from different locations at summer season (2007)
15.	Means of heavy metals of crude molasses collected from different locations at different seasons (2006 - 2007) 96
16.	Heavy metals content of mixed crude and treated molasses at different seasons
17.	Heavy metals content of baker's yeast produced at different seasons
18.	Effect of copper concentration on yield, protein content (on dry weight basis), total viable cells and fermentation power of baker's yeast
19.	Effect of toxic copper concentration on yield, protein content (on dry weight basis), total viable cells and fermentation power of baker's yeast in presence of calcium (20 ppm)
20.	Effect of manganese concentration on yield, protein content (on dry weight basis), total viable cells and fermentation power of baker's yeast
21.	Effect of lead concentration on yield, protein content (on dry weight basis), total viable cells and fermentation power of baker's yeast
22.	Effect of cadmium concentration on yield, protein content (on dry weight basis), total viable cells and fermentation power of baker's yeast