

Synthesis, Characterization and Some Properties of Chelating Polymers for Metal Ion Sorption

THESIS

Submitted in Partial Fulfillment for the Degree of M.Sc. in Chemistry

BY

ASMAA SAYED ALI MOHAMED

B.Sc. of Chemistry (2004)

APPROVAL SHEET

Synthesis, Characterization and Some Properties of Chelating Polymers for Metal Ion Sorption

By ASMAA SAYED ALI MOHAMED

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science

To

CHMESITRY DEPARTMENT FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY

Thesis Advisors

Approved

Prof. Dr. El-Sayed A. Soliman

Professor of Organic Chemistry Chemistry Department-Faculty of Science- Ain Shams University

Prof. Dr. El-Sayed A. Hegazy

Professor of Radiation Chemistry
Ex- Chairman of National Center for Radiation Research and
Technology-Atomic Energy Authority.

Asst. Prof. Dr. Hanaa Kamal Mohamed

Assistant Professor of Radiation Chemistry
Polymer Chemistry Department- National Center for Radiation
Research and Technology- Atomic Energy Authority.

Head of Chemistry Department Faculty of Science, Ain Shams University

ABSTRACT

Ion-exchange membranes have been prepared by radiation induced grafting using simultaneous technique based on low cost starting material and established process technologies. Methacrylic acid (MAA) and styrene (Sty) were selected as the grafted monomers to provide two different types of functional groups. Currently; there is much on going research for developing non fluorinated polymers with better performance and lower cost as alternative ion exchange membrane materials. The polymer chosen for this study is low density polyethylene (LDPE) film of two different thicknesses (40 & 70µm). The influence of grafting conditions, i.e. the effect of total irradiation dose and comonomer concentration and compositions have been investigated. These are important parameters in correlation with the grafting yield because they can markedly influence the composition of the resulting copolymer. Once grafted, the materials were readily sulfonated using concentrated sulfuric acid chlorosulfonic acid in dichloroethane to produce a selection of graft copolymers with performer properties.

The grafting and sulfonation of the membranes were confirmed by (FTIR) X-ray diffraction (XRD) and thermal analysis (TGA, DSC). The physicochemical properties of the prepared membranes such as, ion-exchange capacity (IEC), equilibrium swelling and electrical conductivity of the grafted membranes and their derivatives were investigated as a function of composition and degree of grafting.

The range of ion exchange capacities obtained with different degrees of grafting of MAA/Sty of composition (50/50) that sulfonated with sulfuric acid was in the range of 1.9-3.4 meq/g, whenever, for membranes that sulfonated with chlorosulfonic acid the IEC of 4.2 meq/g was achieved which is better than most of the commercially available membranes in addition to their low cost.

The possibility of practicable use of membranes in various fields, such as the removal of some heavy metal ions is investigated.

Acknowledgement

First of all, thanks to GOD for the infinite helps and persistent supply with patience and efforts to accomplish this work successfully.

I would like to express my great indebt and appreciation to **Prof. Dr. El Sayed A. Hegazy** for his precious care and time and I'm very proud being his student. I feel very fortunate for having worked with such a very knowledgeable and personable adviser.

Many thanks to **Prof. Dr. El-Sayed A. Soliman** for his valuable advice and guidance through this work, I think without his help this work wouldn't come out.

I am heartily thankful to my supervisor, Assti. Prof. Dr. Hanaa Kamal, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

Deepest thanks and sincere gratitude are due to **Dr. Afaf Abd El-Maksood** for her keen support through this work.

I gratefully thank Assti. Prof. Dr. Ghada Adel. I would like to thank her for being the first person who taught me a great deal about polymer science, and training

me while I was in undergraduate student how to work as researcher and enjoy with work.

Where would I be without my family? My parents deserve special mention for their inseparable support, prayers, neverending love. My Father, Sayed Ali, in the first place is the person who put the fundament my learning character, showing me the joy of intellectual pursuit ever since I was a child. My Mother, Zainab, is the one who sincerely raised me with her caring and gently love. Eslam, Ahmed, Reham, Mohamed and shaimaa thanks for being supportive and caring siblings.

Many thanks is due to my husband Ahmed, my dear mother in law, Eman, and my daughter Maryam, for accepting and understanding my long hours in the laboratories and lately in front of the computer while I am writing this dissertation. Their support, encouragement and patience enable me to pursue my career, while at the same time enjoying a lifetime of happiness with them.

Finally, I offer my regards and blessings to all of those who supported me in any respect during the completion of the thesis.

One's work may be finished some day, but one's education never.

CONTENTS

	Page	
Abstract		
Acknowledgement		
List of Figure		
List of Tables		
Aim of work		
CHAPTER I		
INTRODUCTION		
1.1. Radiation-induced graft polymerization		
(RIGP)		
1.2. Applications of Radiation Grafting	3	
1.3. Ion-exchange membranes	5	
1.3.1. Metal Ion Sorption	8	
1.3.2. Ion Exchange	10	
1.3.3. Chelation	10	
1.4. Contamination of Wastewater and soil		
with toxic heavy metal ions		
1.5. Ion exchange and chelating resins		
CHAPTER II	23-54	
LITERATURE REVIEW		

CHAPTER III

EXPERIMENTAL

EXILITIENTAL	
III. 1. MATERIALS	
III.2. APPARATUS AND METHODS	
III.2.1. Gamma Radiation Source	55
III.2.2. Graft Copolymerization Techniques	56
III.2.3 Sulfonation of the grafted copolymers	57
III.2.4. Alkaline Treatment of the Grafted	57
Films	
III.3. PROPERTIES	
III.3.1. FTIR- Spectrophotometric	58
Measurements	
III.3.2 X-Ray Diffraction Measurements	
III.3.3. Thermal Analysis	
III.3.3.1. Thermogravimetric Analysis (TGA)	59
III.3.3.2. Differential scanning calorimetry	59
(DSC)	
III.3.4. Swelling Measurements	61
III.3.5. Determination of Ion exchange capacity	
(IEC)	62
III.3.6. Determination of the equivalent weight	
(EW)	

III.3.7. Electrical Conductivity Measurements

63

III.3.8. UV-Vis measurements	
III. 3.9. Measurements of adsorptive properties	64
of membranes	
CHAPTER (IV)	
RESULT AND DISCUSSION	
IV.1 Introduction	
IV.2.Radiation Induced Graft	
Copolymerization of Binary Monomers	66
(MAA/Sty).	
IV.2.1. Effect of Solvent Composition	67
IV.2.2. Effect of Irradiation Dose on the	70
Grafting of MAA and Sty individually and in a	
binary mixture.	
IV.2.3.Effect of Comonomer Composition	73
IV.2.4. Determination of Rate of Grafting	76
IV.2.5.Effect of Film Thickness	
IV.3. Characterization, Structural	
Investigation and Properties of the	
Prepared Membranes	
IV-3-1 Infrared-Spectroscopy FTIR-	87
Spectroscopy	
IV-3-2 Determination of Crystallinity from	94

X-ray Analysis	
IV-3-3 Thermal Methods for the Examination	102
of Polymers	
IV-3-3-1 Thermogravimetric Analysis	
(TGA)	115
V-3-3-2 Differential Scanning calorimetry	
(DSC)	
IV-3-4 Equilibrium Swelling	124
IV-3-5 Ion Exchange Capacity	131
IV-3-5-1 Ion Exchange Properties	140
IV-3-6 Electrical Conductivity	
IV-4 Cupper ion sorption By LDPE-g-	147
P(Sty/MAA) membranes	
IV-5 Non competitive and Competitive	
Adsorption of Metal ions	
Summary and Conclusion	161
References	
Arabic Summary	

List of Figures

		Page
Figure (1)	Represents schematic diagram for the	5
	ion exchange mechanism	
Figure (2)	Metal sorption mechanisms for cation	6
	binding.	
Figure (3)	Effect of irradiation dose on the grafting of MAA and Sty onto LDPE films of thicknesses 40μm, comonomer concentration 20wt%, in MeOH as a diluent (a) LDPE-g-Sty, (b) LDPE-g-MAA, and (c) LDPE-g-MAA/Sty(50/50wt%).	74
Figure (4)	Effect of Sty/MAA composition on the degree of grafting onto LDPE, film thickness;70µm; comonomer	73
	concentration 20(wt%) in methanol as	
	a diluent, irradiation dose; 15 KGy	
Figure (5)	Effect of Degree of grafting vs. Irradiation Time for Various MAA Concentrations (wt %) onto LDPE Films	77
Figure (6)	Effect of Degree vs. Irradiation Time for Various (MAA/Sty) (90/10) Concentrations (wt %) onto LDPE films.	79

Figure (7)	Effect of Degree of Grafting vs. Irradiation Time for Various Concentrations of (MAA/Sty) (50/50) (wt%) onto LDPE Films	80
Figure (8)	Logarithmic plot of R _g against monomer concentration	82
Figure (9)	FTIR Spectra of (a) Blank LDPE (b) LDPE- g-MAA (c)LDPE-g-(MAA/Sty)(90/10) (d)LDPE-g- (MAA/Sty)(90/10)KOH treated	91
Figure (10)	FTIR Spectra of (a) Blank LDPE (b) LDPE-g-MAA/Sty(50/50wt%) (c)LDPE-g-(MAA/Sty) 50/50wt %) sulfonated (d)LDPE-g-(MAA/Sty) (50/50wt %) sulfonated KOH treated	92
Figure (11)	Variation of the degree of crystallinity with the degree of grafting in LDPE-g-(MAA/Sty)(50/50wt%) membranes, 70μm	99
Figure (12)	Dependance of the crystallite size L_{θ} (A _°) on the degree of grafting of PMAA/PSty (50/50wt%) onto LDPE, 70 μ m.	101
Figure (13)	TGA Thermal Diagram for the grafted LDPE of thickness 70µm, %G=84.	104

Figure (14)	TGA Thermal Diagram for the grafted LDPE of thickness 70µm, %G=160%.	104
Figure (15)	TGA diagram for LDPE-g-(MAA/Sty)(50/50),70µm	105
Figure (16)	Weight loss as a function of degree of grafting at DT (300°C) for LDPE-g-P(Sty/MAA) of comonomer composition(50/50wt%).	107
Figure (17)	Weight loss as a function of comonomer composition of LDPE-g-P(Sty/MAA) at DT (300 °C)	108
Figure (18)	Represents the variation of water content (water moisture) as a function of temperature of LDPE-g-(MAA/Sty)(50/50wt%)	110
Figure (19)	Effect of degree of grafting(%) on water(%)LDPE-g-(MAA/Sty)(50/50), at T = 160 °C	112
Figure (20)	Variation of heat of fusion as a function of %G of LDPE-g-(MAA/Sty)(50/50wt%), 70μm	116
Figure (21)	Variation of melting temperature as a function of %G of LDPE-g-(MAA/Sty) (50/50wt%),70µm	117

Figure (22)	Relative change in the heat of fusion with the degree of grafting in LDPE-g-(MAA/Sty) (50/50wt %), 70µm membranes.	121
Figure (23)	Effect degree of grafting on degree of crystallinity of LDPE-g-MAA/Sty(50/50), 70μm	123
Figure (24)	The equilibrium swelling of LDPE-g-(MAA/Sty) (50/50wt%) of different graft percentage that sulfonated with chlorosulfonic acid.	126
Figure (25)	The equilibrium swelling of LDPE-g-(MAA/Sty) (50/50) of different graft percentage that sulfonated with sulfuric acid	126
Figure (26)	The equilibrium swelling of non sulfonated and sulfonated LDPE-g-(MAA/Sty) (50/50 wt%) (Graft percentage; 100%)	127
Figure (27)	Effect of degree of grafting on %S of sulphonated LDPE-g-(MAA/Sty) (50/50wt%)	130
Figure (28)	Effect of degree of grafting on water to site ratio	133
Figure (29)	Effect of degree of grafting of LDPE-g-(MAA/Sty)(90/10wt%) on ion exchange capacity (IEC)	136

Figure (30)	Variation of IEC with degree of grafting of sulfonated LDPE-g-MAA/Sty(50/50wt %)	136
Figure (31-a)	PH as function of time for CuSO4and $Cu(NO_3)_2$ adsorption onto grafted LDPE with different composition, grafting percent ~70%.	142
Figure (31-b)	PH as function of time for CdCl ₂ adsorption onto grafted LDPE with different composition, grafting percent ~70%.	142
Figure (31-c)	PH as function of time for PbCl ₂ adsorption onto grafted LDPE with different composition, grafting percent ~70%.	142
Figure (32)	PH as function of time for $CuSO_4$ and $Cu(NO_3)_2$ adsorption onto grafted LDPE with different composition, grafting percent ~70%.	143
Figure (33)	Absorption spectra of graft copolymer- metal complexes in solid state	148