

REMOVAL OF ANIONIC AND CATIONIC DYES BY RAW SAWDUST FROM AQUEOUS SOLUTION

By

YOSRA MOHAMED MAHMOUD MAROUF

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE In CHEMICAL ENGINEERING

REMOVAL OF ANIONIC AND CATIONIC DYES BY RAW SAWDUST FROM AQUEOUS SOLUTION

By

YOSRA MOHAMED MAHMOUD MAROUF

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Nabil M. Abd El-Monem

Dr. Ramdan Abd El-Ghany Elkateb

Professor of Chemical Engineering Faculty of Engineering, Cairo University Lecturer of Chemistry
Basic Science and Engineering Department
Higher Institute For Engineering and
Technology - New Damietta

REMOVAL OF ANIONIC AND CATIONIC DYES BY RAW SAWDUST FROM AQUEOUS SOLUTION

By

YOSRA MOHAMED MAHMOUD MAROUF

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In CHEMICAL ENGINEERING

Approved by the Examining Committee	
Prof. Dr. Nabil M. Abd El-Monem	, Thesis Main Advisor
Prof. Dr. Nagwa Mohamed El-Mansy	, Internal Examiner
Prof. Dr. Taha Ibrahiem Farrag	, External Examiner
Professor of Chemical Engineering and Vice De Affair, Faculty of Engineering, Port Said University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Yosra Mohamed Mahmoud Marouf

Date of Birth: 20 / 8 / 1991 **Nationality:** Egyptian

E-mail: Eng.yosra91@hotmail.com

Phone: 01007321035

Address: Damietta, Ras El Bar, street No. 41 villa No. 21

Registration Date: 1/10/2013 **Awarding Date:** 1/2018

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Porf. Dr. Nabil M. Abdel Monem Dr. Ramdan Abd El-Ghany Elkateb

Lecturer of Chemistry, Basic Science and Engineering

Department, Higher Institute For Engineering and Technology

- New Damietta.

Examiners:

Porf. Dr. Taha Ibrahiem Farrag (External examiner)

Professor of Chemical Engineering and Vice Dean for

Educational and Students Affair, Faculty of Engineering, Port

Said University

Porf. Dr. Nagwa Mohamed El-Mansy (Internal examiner)
Porf. Dr. Nabil M. Abd El-Monem (Thesis main advisor)

Title of Thesis:

Removal of anionic and cationic dyes by raw sawdust from aqueous solution.

Key Words:

Sawdust; Acid red57; Basic fuchsin; Adsorption; Dyes.

Summary:

The aim of the present work is the use of low cost available adsorbent, sawdust for the removal of anionic dye acid red57 (AR57) and cationic dye basic fuchsin (BF) from aqueous solution. The effect of parameters such as contact time, pH, adsorbent dosage, initial dye concentrations and temperature were performed for AR57 and BF dyes by batch adsorption studies. The optimum operating conditions of adsorption of AR57 were obtained as contact time 50min, adsorbent dose of 0.1g and pH ranging from 3 to 4 whereas for BF the optimum operating conditions at contact time 50min, adsorbent dose of 0.2g and pH ranging from 6 to 7. Fitting equilibrium data to Langmuir, Freundlich and Temkin isotherms showed that Freundlich model was more suitable to describe AR57 and BF. The kinetic studies showed that the adsorption of AR57 and BF followed pseudo-second-order model. Thermodynamic parameters for AR57 and BF were calculated. The surface characteristics, pore structure, bonding behavior of the samples are characterized by nitrogen adsorption/desorption (BET), scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR). A single stage batch adsorber was designed for adsorption of AR57 and BF by SD based on the optimum isotherm.

Insert photo here

AKNOWLEDGEMENT

My deepest gratefulness, thankfulness and indebtedness to the most merciful "ALLAH", who gave me everything and supported me to accomplish this work.

I do express my gratitude to **Prof. Dr. Nabil M. Abd El-Monem** for his useful guidance, kind help and fruitful discussion.

I do wish also to express my sincere thankfulness and appreciation to **Dr. Ramdan Abd El-Ghany Ali Elkateb** for his constant supervision and support.

A special thanks to my family; words cannot express how grateful I am to my mother, my dear father, my brother and my sister for all of the sacrifices that you've made on my behalf.

Table of Contents

LIST OF TABLES	IV
LIST OF FIGURES	V
LIST OF ABBREVIATIONS	VII
ABSTRACT	VIII
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	3
2.1. OVERVIEW ON DYES	3
2.1.1. Classification of dyes	4
2.1.2. Environmental impacts of dyes	8
2.1.3. Acid red57 and basic fuchsin dyes	9
2.2. OVERVIEW ON WASTEWATER TREATMENT	13
2.2.1. Treatment technologies for color removal	13
2.3. ADSORPTION PROCESS	19
2.3.1. Equilibrium isotherms	21
2.3.2. Adsorption kinetics	24
2.3.3. Adsorbent materials	25
2.4. OVERVIEW ON SAWDUST	26
2.4.1. Chemical composition of sawdust	27
2.4.2. Uses of sawdust	
2.4.3. Sawdust as adsorbent	30
2.5. AIM OF THE WORK	32
CHAPTER 3: EXPERIMENTAL WORK	33
3.1. MATERIALS	33
3.2. APPARATUS	34
3.3. METHODS	36
CHAPTER 4: RESULTS AND DISCUSSION	43
4.1. CHARACTERIZATION OF THE ADSORBENT (SD)	43
4.1.1. Scanning Electron Microscopy (SEM)	43
4.1.2. Fourier transform infrared spectrum (FTIR)	44
4.1.3. Brunauer-Emmett-Teller (BET) surface area	47
4.2. BATCH ADSORPTION EXPERIMENTS	48
4.2.1. Effect of contact time	48
4.2.2. Effect of pH	49
4.2.3. Effect of adsorbent dosage	
4.2.4. Effect of initial dye concentration	
4.2.5. Effect of temperature	55
4.3. EQUILIBRIUM ISOTHERMS	57
4.4. ADSORPTION KINETICS	60
4.5. ADSORPTION THERMODYNAMIC PARAMETERS	63

4.6. PROCESS DESIGN	66
CHAPTER 5: CONCLUSION AND RECOMMENDATION	69
5.1. CONCLUSION	69
5.2. RECOMMENDATION	69
REFERENCES	71

List of Tables

Table 2.1: Classification of dyes according to the chemical structure	5
Table 2.2: Dyes classification according to their application to the fiber type	6
Table 2.3: The comparison between natural and synthetic dyes	8
Table 2.4: Physical properties of acid red57	10
Table 2.5: Physical properties of basic fuchsin	11
Table 2.6: Reported adsorption capacities q _e of AR57 by different adsorbents	12
Table 2.7: Reported adsorption capacities q _e of BF by different adsorbents	12
Table 2.8: Advantages and limitations of dye removal methods	16
·	
Table 2.9: Difference between chemical or physical adsorption	20
Table 2.10: Chemical composition of sawdust.	27
Table 4.1: The wave numbers and ascription of the principle bands in the FTIR spectra of SD before and after adsorption of AR57	46
Table 4.2: The wave numbers and ascription of the principle bands in the FTIR	
spectra of SD before and after adsorption of BF	46
Table 4.3: Brunauer-Emmett-Teller (BET) data for SD.	47
Table 4.4.a: Effect of time on AR57 adsorption by SD, dosage 0.1g, natural pH and	
room temperature	48
Table 4.4.b: Effect of time on BF adsorption by SD, dosage 0.1g, natural pH and	
room temperature	49
Table 4.5.a: Effect of pH on AR57 adsorption by SD, dosage 0.1g, 50 min contact	50
time, room temperature	50
room temperature	51
Table 4.6.a: Effect of dosage on AR57 adsorption by SD, 50 min contact time, pH 3	01
and room temperature	52
Table 4.6.b: Effect of dosage on BF adsorption by SD, 50 min contact time, pH 7 and room temperature	53
Table 4.7.a: Effect of initial dye concentration on AR57 adsorption by SD, dosage	33
0.1g, 50 min contact time, pH 3 and room temperature	54
Table 4.7.b: Effect of initial dye concentration on BF adsorption by SD, dosage 0.2g,	
50 min contact time, pH 7 and room temperature	55
Table 4.8.a: Effect of temperature on AR57 adsorption by SD, dosage 0.1g, 50 min	
contact time, pH 3	56
Table 4.8.b: Effect of temperature on BF adsorption by SD, dosage 0.2g, 50 min contact time, pH 7.	57
Table 4.9: Constants and correlation coefficients for the three isotherms for AR57	51
and BF	59
Table 4.10: Adsorption kinetics parameters for the adsorption of AR57 and BF on	
SD	61
Table 4.11: Thermodynamic parameters for the adsorption of AR57 and BF on SD	64

List of Figures

Figure 2.1: Flow diagram of dyes production and sources of wastes producing
from this process.
Figure 2.2: Chemical structure of acid red57
Figure 2.3: Chemical structure of basic fuchsin.
Figure 2.4: Illustration of the classification of wastewater treatment and
recycling technologies
Figure 2.5: Works published for adsorption and various environmental (Data
after search in Scopus)
Figure 2.6: The structure of cellulose
Figure 2.7: The chemical structure of galactoglucomannan
Figure 2.8: The chemical Structure of coniferyl alcohol, sinapyl alcohol and p-
coumaryl alcohol
Figure 3.1: Scanning electron microscope
Figure 3.2: Fourier transform infrared spectrum.
Figure 3.3: Spectrophotometer
Figure 3.4: Flow diagram of the effect of contact time experiments for AR57
and BF
Figure 3.5: Flow diagram of the effect of pH experiments for AR57 and BF
Figure 3.6: Flow diagram of the effect of dosage experiments for AR57 and
BF
Figure 3.7: Flow diagram of the effect of concentration experiments for AR57 and BF.
Figure 3.8: Flow diagram of the effect of temperature experiments for AR57 and BF
Figure 4.1: SEM images for (a) raw sawdust; (b) sawdust with AR57 dye; (c)
sawdust with BF dye
Figure 4.2: FT-IR spectrum of: (a) raw sawdust; (b) sawdust with AR57 dye; (c)
sawdust with BF dye
Figure 4.3: Brunauer-Emmett-Teller (BET) analysis of SD
Figure 4.4.a: Effect of time on AR57 adsorption by SD, dosage 0.1g, natural pH
and room temperature
Figure 4.4.b: Effect of time on BF adsorption by SD, dosage 0.1g, natural pH
and room temperature.
Figure 4.5.a: Effect of pH on AR57 adsorption by SD, dosage 0.1g, 50 min
contact time and room temperature.
Figure 4.5.b: Effect of pH on BF adsorption by SD, dosage 0.1g, 50 min contact time, room temperature
time, room temperature
pH 3 and room temperature
Figure 4.6.b: Effect of dosage on BF adsorption by SD, 50 min contact time, pH
7 and room temperature
Figure 4.7.a: Effect of initial dye concentration on AR57 adsorption by SD,
dosage 0.1g, 50 min contact time, pH 3 and room temperature

Figure 4.7.b: Effect of initial dye concentration on BF adsorption by SD, dosage	55
0.2g, 50 min contact time, pH 7 and room temperature	
Figure 4.8.a: Effect of temperature on AR57 adsorption by SD, dosage 0.1g, 50	
min contact time, pH 3	56
Figure 4.8.b: Effect of temperature on BF adsorption by SD, dosage 0.2g, 50	
min contact time, pH 7	57
Figure 4.9: Equilibrium isotherms for adsorption of AR57 from aqueous	
solutions onto SD.	59
Figure 4.10: Equilibrium isotherms for adsorption of BF from aqueous solutions	
onto SD.	59
Figure 4.11: Langmuir plots for the adsorption of AR57 and BF	59
Figure 4.12: Freundlich plots for the adsorption of AR57 and BF	60
Figure 4.13: Temkin plots for the adsorption of AR57 and BF	60
Figure 4.14: Pseudo-first-order kinetic plots for the adsorption of AR57 onto SD	
at various concentrations.	62
Figure 4.15: Pseudo-second-order kinetic model plot for the adsorption of AR57	
onto SD at various concentrations.	62
Figure 4.16: Pseudo-first-order kinetic model plot for the adsorption of BF onto	
SD at various concentrations.	63
Figure 4.17: Pseudo-second-order kinetic model plot for the adsorption of BF	
onto SD at various concentrations.	63
Figure 4.18: Van't Hoff plot for determination of thermodynamic parameters for AR57	65
Figure 4.19: Van't Hoff plot for determination of thermodynamic parameters for	
BF	65
Figure 4.20: Single stage batch adsorber design	66
Figure 4.21.a: The relation between volume of liquid and adsorbent dosage for	
different concentrations for AR57	67
Figure 4.21.b: The relation between volume of liquid and adsorbent dosage for	
different percent removal for AR57	67
Figure 4.22.a: The relation between volume of liquid and adsorbent dosage for	
different concentrations for BF	68
Figure 4.22.b: The relation between volume of liquid and adsorbent dosage for	
different percent removal for BF.	68

List of Abbreviations

AR57: Acid red57

BET: Brunauer-Emmett-Teller

BF: Basic fuchsin

C_e: Equilibrium concentration

C_f: Final concentrations
 C_i: Initial concentration
 C_o: Initial concentration

 C_t : The concentrations at time t FTIR: Fourier transform infrared ΔG : The free energy change ΔH : The change in enthalpy K: Equilibrium constant

K₁: Pseudo first order rate constantK₂: Pseudo second order rate constant

 K_F : Freundlich constant K_L : Langmuir constant K_T : Temkin constant

M: The mass of dry adsorbent

n: Heterogeneity factor

 $\begin{array}{ll} q_e \hbox{:} & Adsorption \ capacity \ at \ equilibrium \\ q_m \hbox{:} & Maximum \ adsorption \ capacity \\ q_t \hbox{:} & Adsorption \ capacity \ at \ time \ t \end{array}$

R: Universal gas constant ΔS : The change in entropy

SD: Sawdust

SEM: Scanning electron microscope
T: The absolute temperature

V: Volume of solution

Abstract

The aim of the present work is the use of low cost available adsorbent, sawdust for the removal of anionic dye acid red57 (AR57) and cationic dye basic fuchsin (BF) from aqueous solution. Adsorption studies of AR57 and BF from aqueous solution onto sawdust were performed by the batch equilibrium technique. The effect of parameters such as contact time, pH, adsorbent dosage and temperature were performed with different concentrations of AR57 and BF dyes to determine the optimum conditions for dye removal.

The adsorption of AR57 and BF on SD was increased with an increase in contact time and adsorbent dosage, while decreased with increase in temperature and initial dye concentration. The increases in pH decrease the adsorption of AR57 and increase the adsorption of BF. The optimum operating conditions of adsorption of AR57 were obtained as contact time 50 min, adsorbent dose of 0.1 g and pH ranging from 3 to 4 whereas for BF the optimum operating conditions at contact time 50 min, adsorbent dose of 0.2 g and pH ranging from 6 to 7.

Fitting equilibrium data to Langmuir, Freundlich and Temkin isotherms showed that Freundlich model was more suitable to describe AR57 and BF. The kinetic studies showed that the adsorption of AR57 and BF followed pseudo-second-order model. Thermodynamic parameters calculated from the adsorption of AR57 and BF were spontaneous and exothermic with negative values of ΔG and ΔH . The negative values of ΔS showed that the randomness decrease during the adsorption process.

The surface characteristics, pore structure, bonding behavior of the samples are characterized by nitrogen adsorption/desorption (BET), scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR). A single stage batch adsorber was designed for adsorption of AR57 and BF by SD based on the optimum isotherm. Experimental results indicate that SD is an effective and cheap adsorbent for the removal of anionic and cationic dye molecules from aqueous solutions.

Chapter 1: Introduction

The annual worldwide dyes production is approximately 8×10^5 tonnes which used in different industries and these industries discharging highly colored waste water. Dyes are widely used in several industries such as textile, paper production, plastic, rubber, carpets, petroleum, cosmetics, leather tanning, ceramics and paint [1, 2]. Depending on the dyeing processes about (10 - 50%) of dyes are released as industrial waste water into water bodies [3].

Dyes are important class of organic pollutants and having hazardous effects on both environment and human even at low concentrations (less than 1 ppm) [4]. The harmful effects of dyes on environment are retardation in photosynthetic activity by inhibiting the penetration of light into water which cause reduction in the dissolved oxygen (DO) level and destroy aquatic life [5]. Many dyes are carcinogenic, toxic and mutagenic to both human and animals due to presence of aromatic ring in their structure [6].

Dyes are divided into non-ionic, anionic and cationic dyes. Acid Red57 (AR57) is well known anionic dye for leather, nylon fabric, wool and silk. Basic fuchsin (BF) is atypically cationic dying material which has been extensively applied in paints, artificial fiber, leather, paper, inks and cotton [7]. Acid red57 and basic fuchsin are toxic and mutagenic synthetic dyes [8, 9]. Acid red57 can cause serious health problems and toxicological problems to the aquatic environment agriculture lands [8, 10]. Basic fuchsin may cause irritation to skin or gastrointestinal or respiratory tract by the inhalation, ingestion or direct contact with it [11]. Thus it is necessary to remove these dyes from waste water before their final disposal.

For the removal of dyes from industrial effluents before discharged to environment various methods have been investigated in order to control negative impact of dyes. Effluent treatment methods can be divided into physical, chemical and biological processes [12]. Techniques such as reverse osmosis [13], ion exchange [14], coagulation [15], flocculation [16], membrane filtration [17], chemical oxidation [18], electrochemical reduction [19] and microbiological decomposition [20] are widely applied for dye removal. Each techniques often has disadvantages like low efficiency in dye removal, high cost of treatment, intensive energy requirement, incapable of treating large volumes of effluent and harmful byproduct, so that adsorption has preferred for dye removal [21].

Adsorption technique was widely used and proven to be efficient and favorable method for removal a wide range of pollutants from wastewater, especially organic pollutant [22]. Adsorption has the advantages of simplicity in design and operation, low energy requirement, high removal efficiency even from dilute solutions and low processing cost [23].

The effective adsorption process was widely employed by using solid materials as adsorbents for industrial waste water [24]. Activated carbon has shown a good performance in adsorption a wide range of pollutants as dyes. However, activated

carbon has some constraints such as high cost for manufacturing and operating, it become undesirable for water treatment [25]. Thus several alternative low cost adsorbents has been reported for various dyes removal including rice husk [26], orange peels [27], sugar beet pulp [28], bean [29], sawdust [30] and banana fiber [31].

Sawdust is low cost, locally available material and solid residue, can be used as efficient adsorbent in adsorption process. It can easily traps contaminants such as dyes and heavy metals from wastewater due to lignocellulosic composition [32]. Some studies have been performed for removal dyes with sawdust such as methylene blue [33], acid red7, basic red29 [34] and basic crystal violet [35].

The aim of the present work is the use of sawdust as low cost adsorbent for the removal of anionic dye (acid red57) and cationic dye (basic fuchsin) from aqueous solution. The effect of parameters such as contact time, pH, adsorbent dosage, initial dye concentration and temperature were performed in batch experiments. Thermodynamic, kinetics and isotherms studies and single stage adsorber design were carried out.

Chapter 2: Literature Review

2.1. Overview on dyes

For thousands of years, dyes (colorants) have been used and the earliest known use of it is believed to be by Neanderthal man around 1,80,000 years ago. Blue indigo is the first known organic colourant from ancient time (nearly 4000 years ago) which was found in wrappings of mummies in Egyptian tombs [36]. Insects, mollusks, plants, trees, and minerals were used as sources of natural dyes until the first synthetic dye, mauveine was discovered by an English Chemist (Sir William Henry Perkin) in 1856 [37, 38]. By the end of 19th century, dyes were manufacturing synthetically on large scale and replaced the natural dyes due to that synthetic dyes improved the properties of the dyed materials, less expensive and offered wide range of new colors [39].

Synthetic dyes are widely used in many fields e.g., textile, paper, plastic, rubber, carpets, petroleum, cosmetics, leather tanning, ceramics and paints. Due to extensive application and large scale production, dyes can cause considerable environmental pollution such as reduction in the dissolved oxygen (DO) level, retardation in photosynthetic activity and inhibition the growth of aquatic biota. Dyes have serious hazard to human and animals due to its carcinogenicity and toxicity. Figure 2.1 presents a typical example of dyes production and wastes which producing from it [40].

Dye is a colored substance used for addition or changing the color of various materials and composed of two essential kinds of parts: chromophore (responsible for color production) and auxochrome is acts as supplier for chromophore and enhanced the affinity toward the fibers [41]. It can attach to materials by mechanical retention, formation of metal-complex or salt, by formation of covalent chemical bonds or by physical adsorption. Dyes are classified on different bases, their application to the fiber type and the chemical composition [42].