MOLECULAR MARKERS ASSOCIATED WITH DROUGHT TOLERANCE IN CITRULLUS COLOCYNTHIS

AHMED HASSAN MOHAMMED HASSAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 7 · · · M.Sc. Agric. Sc. (Genetics), Ain Shams University, 7 · · · 5

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

MOLECULAR MARKERS ASSOCIATED WITH DROUGHT TOLERANCE IN CITRULLUS COLOCYNTHIS

AHMED HASSAN MOHAMMED HASSAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2000 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 7 · · · o

This thesis for Ph.D. degree has been approved by:

Dr.	Mahmoud Imam Nasr
	Prof. Emeritus of Genetics, Genetic Engineering and
	Biotechnology Research Institute, Minufiya University
Dr.	El-Sayed Hassan Hassanien
	Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams
	University
Dr.	Rania Ahmed Younis
	Associate Prof. of Genetics, Faculty of Agriculture, Ain Shams
	University
Dr.	Mohamed Abdel-Salam Rashed
	Prof. of Genetics, Faculty of Agriculture, Ain Shams University

Date of Examination: 26/10/7.1.

MOLECULAR MARKERS ASSOCIATED WITH DROUGHT TOLERANCE IN CITRULLUS COLOCYNTHIS

AHMED HASSAN MOHAMMED HASSAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2000 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 7 · · · 5

Under the supervision of:

Dr. Mohamed Abdel-Salam Rashed

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Rania Ahmed Younis

Associate Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Nahed Ahmed Kamel Fahmey Rashed

Associate Research Prof. of Genetics, Department of Genetic Resources, Desert Research Center

ACKNOWLEDGMENT

First I wish to thank **Allah** for all the favors and for prosperity and patience to achieve this study.

I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. S. H. Hassanien**, Prof. of Genetics, Faculty of Agriculture, Ain Shams University for the best acquisition, continuous supervision, kind encouragement, sincere help criticism and precious advices during the progress of thesis work and the preparation of the manuscript.

I would like to express my deepest thanks to Prof. **Dr. F. M. El-Domyati**, Prof. of Genetics, Faculty of Agriculture, Ain Shams University for his close supervision and personal and scientific help during the period of this study.

I would like to express my deepest thanks to Prof. **Dr. M. A. Rashed**, Prof. of Genetics, Faculty of Agriculture, Ain Shams University for his kind supervision and personal and scientific help during the period of this study and his efforts in reviewing the thesis.

I would like to express my deepest thanks to Prof. **Dr. Ismail A. Hussein** Prof. of Pomology, Desert Research Center, for his constructive criticism, providing all needed facilities, sincere help criticism, kind encouragement and helpful instructions.

I would like to express my deepest thanks to **Dr. Rania A. Younis**, Assocate prof. of Genetics, Faculty of Agriculture,
Ain Shams University for her kind supervision and scientific help and her efforts in reviewing the thesis.

I would like to express my deepest thanks to **Dr. Nahed A. Rashed**, Assocate prof. of Genetics, Desert research center

for her kind supervision and scientific help and her efforts in reviewing the thesis.

Special thanks to **Dr. Sherif Edries** and All the staff members of Department of Genetics, Faculty of Agriculture, Ain Shams University, for their cooperation, support and unlimited assistances.

My deepest thanks to the staff members of North Sinai Station, Desert Research Center (DRC), for their kind support.

Finally, I am deeply indebted to **my parents** and **my wife** for their support, continuous encouragement and praying for me.

ABSTRACT

Ahmed Hassan Mohammed, molecular markers associated with drought tolerance in *Citrullus colocynthis*. Unpublished ph.D Thesis, Genetics Department, Faculty of Agriculture, Ain Shams University, 2010.

The present study represents some Mean performance of chemical compositions and vegetative measurements in Citrullus colocynthis. Chemical compositions were measured for some components (% Mean total Alkaloids, Mean total Proline Conc. µg/ml (ppm) and Mean total pigments), for four different sites at Red sea coast (Elba Mountain), New valley North Sinai. and Katreen. Some Measurements were measured also in Citrullus colocynthis for some characters (Mean leaf area cm2, Mean leaves number, Mean branches number, Mean stem diameter cm, Mean shoot length cm and Mean roots length cm). On the other hand molecular markers associated with drought tolerance were studied using thirteen preselected random primers (RAPD) and fourteen preselected (ISSR) primers exhibited polymorphism obtained from the DNAs of sixteen samples of C. colocynthis (C1-C4) from the four different sites at Elba Mountain, New valley, North Sinai, and Katreen areas.

The study also aimed to detection and sequencing of some drought tolerance genes in *Citrullus colocynthis* using the genomic DNA based on the four plants analysis, each plant from Elba Mountain, New valley, North Sinai, and Katreen areas. The specific primers of those drought tolerant genes were (Dehydrin gene), (UB gene), (P5CS gene), (PEPKS gene) and (ACT gene), which were succeed to detect some drought tolerant genes among the four locations of *Citrullus colocynthis*.

Key words: *Citrullus colocynthis*, chemical compositions, vegetative Measurements, RAPDs, ISSRs, molecular markers and drought tolerant genes.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	VIII
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Chemical composition and Vegetative Measurements	5
1. 1. Chemical composition	5
1.2. Vegetative Measurements	9
2. Molecular markers of medicinal plants	11
2.1. Random amplified polymorphic DNA (RAPD)	12
2.2. Inter simple sequence repeat (ISSR)	20
3. Drought stress studies	25
3.1. Drought tolerance genes	26
MATERIALS AND METHODS	29
1. Plant materials	29
2. Methods	29
2.1. Water field capacity	30
2.2. Chemical composition and Vegetative	
Measurements	30
2.2. 1. Chemical composition	30
2.2. 1. a. Alkaloids content	31
2.2. 1. b. Proline content	31
2.2. 1. c. Main total pigments	31
2.2.2. Vegetative Measurements	31
2.2.3. Statistical analysis	31
2.3. Molecular studies	31
2.3. a. RAPD-PCR	31
2.3. a.1. DNA Isolation	31
2.3. a. 2. Polymerase chain reaction (PCR)	33
2.3. a. 3. Gel electrophoresis	34
2.3. b. ISSR-PCR	35
2.3. b.1 polymerase chain reaction	35

2.3.b.2. Gel electrophoresis	35
2.3.c. Statistical analysis	36
2.4. Detection of some drought tolerance genes	36
2.4.1. Polymerase chain reaction (PCR)	37
2.4.2. Gel electrophoresis	37
2.4.3. DNA Sequencing	38
RESULTS AND DISCUSSION	39
1. Chemical composition and Vegetative Measurements	39
1. 1. Chemical composition	39
1. 2. Vegetative Measurements	46
2. Molecular fingerprinting	55
2.1. Molecular Markers	55
2.1.1. RAPD-PCR	56
2.1.1. a. Specific markers based on RAPD	71
2.1.1. b. Analysis of molecular variance (AMOVA)	74
2.1.2. ISSR-PCR	74
2.1.2.a. Specific markers based on ISSR	92
2.1.2.b. Analysis of molecular variance (AMOVA)	94
3. Drought tolerance genes	95
3.1. Detection of some drought tolerance genes	95
3. 1.1. Dehydrin gene	95
3. 1. 2. PEPCS gene	96
3. 1. 3. UB gene	97
3. 1. 4. P5CS gene	98
3. 1. 5. ACT2 gene	99
3.2. DNA Sequencing	100
SUMMARY	105
REFERENCES	108
ARABIC SUMMARY	

LIST OF TABLES

Table	Title	Page
No.	1111	- ugu
1	List of operon primers (A, B, O and Z) and their	
	nucleotide sequence	33
2	ISSR primer-pairs names and their sequences	36
3	Drought tolerance genes primers and their	
	sequences	38
4	Average of mean total alkaloids characters of	
	four Citrullus colocynthis	39
5	Average of mean total proline concentrations	
	μg/ml(ppm characters of four Citrullus	
	colocynthis	40
6	Average of mean total chlorophyll (A)	
	characters of four Citrullus colocynthis	40
7	Average of mean total chlorophyll (B)	
	characters of four Citrullus colocynthis	40
8	Average of mean total carotene characters of	
	four Citrullus colocynthis	41
9	Significant differences between mean	
	treatments	41
10	Average of mean leaf area (cm2) of four	
	Citrullus colocynthis	41
11	Average of mean leaves number of four	
	Citrullus colocynthis	46
12	Average of mean branches number of four	
	Citrullus colocynthis	47
13	Average of mean stem diameter (cm) of four	
	Citrullus colocynthis	47
14	Average of mean shoot length (cm) of four	
	Citrullus colocynthis	47

15	Average of mean root length (cm) of four	
	Citrullus colocynthis	48
16	Significant differences between mean	
	treatments	48
17	Significant differences between sites	49
18	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	A05 primer	57
19	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-A10 primer	58
20	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-A15 primer	59
21	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-B05 primer	60
22	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-B10 primer	61
23	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-B15 primer	62
24	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-O01 primer	63
25	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-O05 primer	64
26	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-008 primer	65

27	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	OP-O12 primer	66
28	Amplified fragments obtained from <i>C</i> .	
	colocynthis (C1-C4) from four different sites via	07
00	OP-O19 primer	67
29	Amplified fragments obtained from <i>C</i> .	
	colocynthis (C1-C4) from four different sites via	00
0.0	OP-Z04 primer	68
30	Amplified fragments obtained from <i>C</i> .	
	colocynthis (C1-C4) from four different sites via	00
0.4	OP-Z10 primer	69
31	RAPD analysis from the DNAs of <i>C.</i>	74
00	colocynthis via 13 random primers	71
32	Numbers and specific markers molecular	
	weights for the C. colocynthis from four	70
00	different sites resulting from RAPD-PCR	73
33	Analysis of molecular variance (AMOVA) of	
	sixteen C. colocynthis of four different sites	
0.4	resulting from all RAPD-PCR data	74
34	Amplified fragments obtained from <i>C</i> .	
	colocynthis (C1-C4) from four different sites via	70
0.5	HB08 primer	76
35	Amplified fragments obtained from <i>C</i> .	
	colocynthis (C1-C4) from four different sites via	
0.0	HB09 primer	77
36	Amplified fragments obtained from <i>C</i> .	
	colocynthis (C1-C4) from four different sites via	70
07	HB10 primer	78
37	Amplified fragments obtained from <i>C</i> .	
	colocynthis (C1-C4) from four different sites via	
	HB11 primer	79

38	Amplified fragments obtained from <i>C.</i>	
	colocynthis (C1-C4) from four different sites via	
	HB12 primer	
39	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	HB13 primer	
40	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	HB14 primer	
41	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	HB15 primer	
42	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	ISSR1 primer	
43	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	ISSR2 primer	
44	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	ISSR4 primer	
45	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	814 primer	
46	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	844A primer	
47	Amplified fragments obtained from C.	
	colocynthis (C1-C4) from four different sites via	
	844B primer	
48	ISSR analysis from the DNAs of <i>C. colocynthis</i>	
	via 14 random primers	

VII

49	Numbers and specific markers molecular	
	weights for the C. colocynthis from four	
	different sites resulting from ISSR-PCR	93
50	Analysis of molecular variance (AMOVA) of	
	sixteen C. colocynthis of four different sites	
	resulting from all ISSR-PCR data	94
51	Similarity of ACT2 gene	104

LIST OF FIGURES

No.	Title	Page
1	Citrullus colocynthis	29
2	Design of water field capcity experiment	30
3	Diagrammatic representation for Mean total Alkaloids for	
	four Citrullus colocynthis sites under five different water	
	field capacity treatments	42
4	Diagrammatic representation for Mean total Proline for	
	four Citrullus colocynthis sites under five different water	
	field capacity treatments	43
5	Diagrammatic representation for Mean total Chlorophyll	
	(A) for four Citrullus colocynthis sites under five different	
	water field capacity treatments	44
6	Diagrammatic representation for Mean total Chlorophyll	
	(B) for four Citrullus colocynthis sites under five different	
	water field capacity treatments	44
7	Diagrammatic representation for Mean total Carotene for	
	four Citrullus colocynthis sites under five different water	
	field capacity treatments	45
8	Diagrammatic representation for Mean leaf area for four	
	Citrullus colocynthis sites under five different water field	
	capacity treatments	50
9	Diagrammatic representation for Mean leaves number for	
	four Citrullus colocynthis sites under five different water	
	field capacity treatments	50
10	Diagrammatic representation for Mean branches number	
	for four Citrullus colocynthis sites under five different	
	water field capacity treatments	51
11	Diagrammatic representation for Mean stem diameter for	
	four Citrullus colocynthis sites under five different water	
	field capacity treatments	52