Content Based Retrieval for Non-Rigid 3D Objects

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

By

Hanan Ahmed Abd El-Aal
B.Sc. in Computer and Information Sciences,
Demonstrator at Scientific Computing Department,
Faculty of Computer and Information Sciences,
Ain Shams University.

Under Supervision of

Dr. Howida Abdel-Fattah Shedeed
Associate Professor,
Scientific Computing Department,
Faculty of Computer and Information Sciences,
Ain Shams University.

Dr. SafwatHelmy Mohammed Hamad Associate Professor, Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

Dr. DoaaHegazy
Assistant Professor,
Scientific Computing Department,
Faculty of Computer and Information Sciences,
Ain Shams University.

Cairo 2016

List of Publication

- Hanan Ahmed, Howida A. Shedeed and DoaaHegazy :Enhanced Ray Tracing Algorithm for Depth Image Generation.British Journal of Mathematics & Computer Science, 2015
- Hanan Ahmed, Howida A. Shedeed, SafwatHamad and Mohamed F. Tolba, On Combining Nature Inspired Algorithms for Data Clustering. Handbook of Research on Machine Learning Innovations and Trends, 2016,

Acknowledgements

All praise and thanks to Allah, who gave me the guidance, the patience and the support to attain this achievement.

I want to express my honor to be one of Prof. Mohammed Fahmy Tolba students and be under his supervision for a while. His advices helped and guided me a lot.

I want to thank Associate Prof. Howida Abdel-Fattah Shedeed for supervising this research work and for her support, patience, guidance and her kind personality. She stood by me throughout all the difficulties I faced during my research work.

I am deeply indebted to, Dr. Safwat Hamed, for his endless help, and support. His advice and insight have been invaluable throughout my entire time of research. His advices gave me academic guidance and provided the milestones that helped to develop my research skills. I don't know how to express my gratitude for his support for all my life difficulties.

I am gratitude to Dr. Doaa for her support help and guidance. Dr. Doaa Thank you for accepting to be my supervisor.

I would like to thank my family my mother, my husband Abd El-Rahman El-Jazzar, my sisters and my brother in law for their support and special thanks to my mam and my husband who support me and encourage me. Finally I wish make my Son Omar proud of me.

Abstract

Recently, 3D objects are used in different fields such as game industry, Computer Aided Design (CAD), medicine, cultural heritage, etc. The continuous increase of 3D objects databases' size has made a necessity for the construction of efficient retrieval algorithms.

Retrieval algorithms can be driven by using textual description to the desired model. In this case, the user would explicitly describe the target. But such an approach is sensitive to the user's subjectivity factor which is not necessarily in agreement with the textual information annotated to the target. The problem of textual retrieval is that, it is based on human indexing or description of the models which differs from one person to anther and also it is time consuming. So the best way to retrieve the model, is to let the model describes itself using content based retrieval algorithms.

Content based retrieval algorithms are algorithms that use the 3D object characteristics themselves as descriptors (shape descriptors) in order to be used in the matching operation.

In the last few years, the problem of 3D object retrieval has become an active research topic and attracted more and more researchers from several research communities, including pattern recognition, computer graphics, computer vision, and applied mathematics, trying to extract discriminative descriptor.

The 3D shape retrieval can be categorized into two categories. The first category is rigid object retrieval which identifies rigid objects such as glasses, tables, building, standing humans and setting humans. Rigid considers each pose for human as separate class or category. The second category is non-rigid object retrieval which interested in articulated models. Non-rigid object retrieval concerns the human as single class whatever its pose.

The problem of 3D non-rigid object retrieval is very complex due to; the different representation of 3D models, the difference in measures of 3D retrieval performance and the different benchmarks used to evaluate the performance.

In this thesis we introduced an efficient algorithm for non-rigid 3D object retrieval. This algorithm is a view based algorithm which depends on rendering the model as range images from multiple view directions about the model, as in the Light Field Descriptor (LFD) [1]. In this thesis a new proposed method (Enhanced ray tracing) was introduced [2] and used for depth image generation. To extract local features from each range image, the proposed method uses the Scale Invariant Feature Transform (SIFT) algorithm proposed by Lowe [3]. As each depth image yields a few dozen of features, and there are a few dozen of range images per model, a 3D model is associated with hundreds of local features. Computing dissimilarity between two sets of local features having thousands or hundreds of local features each can be quite expensive. Our proposed method avoids the costly pair-wise distance computation by integrating all the local features of the model into a single feature vector by using the Bag-Of-Features (BoF) [4] approach. In our proposed method, vectorquantized local features, or visual words, from multiple range images are accumulated into single histogram to become a feature vector for the 3D model. The Modified Extremely Randomized Clustering Trees (MERC- Trees) are trained using training sample which is a subset of the whole dataset descriptors. The codebook for the vector quantization is learned via MERC of local features extracted from the 3D models in the database. The MERC splits its nodes after (T_r) of tries to get the split threshold with maximum score which makes the split more accurate and increase the classification power. The MERC leaves are labeled by the class frequencies.

From our experimental results we find that the proposed algorithm is fast to compute, compact to store and effective for retrieving non-rigid 3D objects. It achieved efficient retrieval performance on

SHREC 2011 dataset, SHREC 2015 and SHREC 2011-Robust; the public well known benchmarks of non-rigid 3D models. The results have indeed confirmed that, the proposed descriptor is invariant against different kinds of deformations. Moreover, the proposed algorithm achieved the 6th best performance on SHERC'15. keeping in mind that all participating algorithms are not view based approach and based on using the topological and geometrical features which can discriminate the non-rigid models easier than the view based algorithm.

In conclusion, the contribution of our work is introducing a compact, easy to compute and discriminative silent local visual features with SIFT feature descriptor which extracted from set of different depth images which were taken from different angles using our enhanced ray tracing algorithm [2]. Those images produce a set of few hundreds of SIFT features, Computing dissimilarity between two sets of local features having hundreds of local features can be quite expensive so, BoF approach was applied using our proposed MERC-Trees method for reducing time and space complexity.

Table of Contents

List of Publication	I
Acknowledgements	III
Abstract	IV
List of abbreviations	XIV
List of Figures	XVI
List of Tables	XX
Chapter 1: Introduction	1
1.1 Motivation and Problem Statement	1
1.2 Research Objectives	3
1.3 Thesis Contribution	3
1.4 Thesis Overview	4
1.5 Conclusions	4
1.6 List of Publication	5
1.6.1 Journal Publication	5
Chapter 2: Scientific Background	6
2.1 3D Content-Based Retrieval	6
2.2 3D Object Representation	8
2.2.1 Point Based Representations	8

	2.2.2 Surface Representation
	2.2.3Volumetric (Solid) Representation
2.3 3	D shape retrieval framework
	2.3.1 3D model data base (Benchmark)
	2.3.2 Query
	2.3.3 Descriptors
	2.3.4 Indexing Structure
	2.3.5 Measuring Similarity
2.4 3	D Object Retrieval Aspects
	2.4.1Efficiency
	2.4.2 Discriminative Power
	2.4.3 Robustness and sensitivity
	2.4.4 Partial matching
	2.4.5 Pose normalization
2.5 E	Evaluation Metrics
	2.5.1Precision and Recall Plot
	Figure 2.15 is an example of recall-precision plots which indicates that BF-DSIFT-E is the best 26
	algorithm because each recall (percentage of retrieved models from all relevant models) value has the
	highest precision value (percentage of relevant models from retrieved models) so the perfect
	result is the horizontal line, so all retrieved models are relevant and all relevant are retrieved 26

2.5.2 Nearest Neighbor (NN)	26
2.5.3 First tier (FT) and Second tier (ST)	26
2.5.4 E-Measure	26
2.5.5 Discounted Cumulative Gain (DCG)	27
2.6 Categories of 3D Non-Rigid Retrieval Algorithms	27
2.7 Conclusions	30
Chapter 3 : Sate of the Art	32
3.1 Introduction	32
3.2 Scale Invariant Feature Transform (SIFT)	33
3.2.1 SIFT Extraction	34
3.2.2 Comparison of SIFT Features with Other Local Features	41
3.3 SIFT Descriptor with BoF Paradigm	42
3.3.1 Feature Detection	42
3.3.2 Feature Representation	43
3.3.3 Vocabulary (CodeBook) Construction	43
3.3.4 Building BoF Histograms	44
3.4 Salient Local Visual Features for Shape Based 3D Model Retrieval Using Bag	of Features (BF-
SSIFT)	44
3.4.1 Pose normalization	46
3.4.2 Multi-view Rendering	18

	3.4.3 Local Feature Extraction	49
	3.4.4 Vector Quantization	50
	3.4.5 Histogram Generation	51
	3.4.6 Distance computation	51
3.5	Bag-of-Features Dense SIFT (BF-DSIFT)	52
	3.5.1 Dense Sampling	52
	3.5.2 Vector Quantization	53
3.6	Conclusions	56
Cha	pter 4 : On Combining Nature Inspired Algorithms for Data Clustering	58
4.1	Introduction	58
4.2	Data clustering.	60
	4.2.1 Data Clustering Algorithms:	60
4.3	Previous Work	61
	4.3.1 Central Force Optimization (CFO) Algorithm	64
	4.3.2 Gravitational Search Algorithm (GSA)	66
	4.3.3 Particle Swarm Optimization (PSO) Algorithm	68
4.4	A Comparative Study among PSO, GSA and CFO Algorithms	68
4.5	The Proposed Experiment	69
	4.5.1 The proposed combination models	70
	4.5.2. The performance metrics	. 73

4.6 Experimental results	73
4.6.1 Intra Cluster Distances Analysis	74
4.6.2 Running Time Analysis	76
4.6.3 Distance between centers of clusters.	76
4.7 Conclusions	78
Chapter 5 : Enhanced Ray Tracing Algorithm for Depth Image Generation	83
5.1 Introduction	83
5.2 Material and Methods	84
5.2.1 Previous Work	84
5.2.2 Ray Tracing Algorithm	86
5.2.3 Enhanced Ray Tracing Algorithm (Enhanced RT)	87
5.3 Results and Discussion	91
5.3.1 Results	92
5.4 Conclusion	96
Chapter 6 : Proposed 3D Non-rigid Object Retrieval Approach	98
6.1 Introduction	98
6.2 The Proposed Algorithm	99
6.2.1 Phase One: Model Normalization	99
6.2.2 Phase Two: Multi-view Rendering	100
6.2.3 Phase Three: Extract SIFT Features	100

6.2.4 Phase Four: Extracting the Training Set and Build the Visual Codebook	101
6.2.5 Phase Five: Vector Quantization	103
6.2.6 Phase Six: Matching Phase	104
6.3 Conclusions	104
Chapter 7: Experimental Results and Evaluation	106
7.1 Introduction	106
7.2 The Datasets	106
7.2.1 3D Model Database (Benchmark)	107
7.3 Implementation Tools	109
7.4 Experiments	110
7.4.1 Visual codebook learning	110
7.4.2 Vocabulary Size	110
7.4.3 Training Set Size	111
7.4.4 Distance Function	111
7.5 Results	111
7.6 Evaluations and Comparisons	119
7.7 Conclusions	122
Chapter 8 : Conclusions and Future Work	123
8.1 Conclusions	123
8.2 Future Work	125

References 127

List of abbreviations

SIFT: Scale Invariant Feature Transform

SHREC: Shape Retrieval Contest

HKS: Heat Kernel Signature

MRGs: Multi-resolutionalReeb Graphs

GH: GromovHausdorff

Enhanced RT: Enhanced Ray Tracing

LFD: light field descriptor

BoF: Bag of Features

CSG: Constructive Solid Geometry

PSB: Princeton Shape benchmark

OFF: Objective File Format

PCA: Principle Component Analysis

NN: Nearest Neighbor

FT: First Tier

ST: Second Tier

R: Recall

P: Precision

DCG: Discounted Cumulative Gain

PSO: Particle Swam Optimization

GSA: Gravitational Search Algorithm

CFO: Central Force Optimization

UCI: University of California, Irvine

KM-GSA: K-means combined with GSA

PSO-GSA: PSO combined with GSA

CFO- GSA: CFO combined with GSA

KM-PSO: K-means combined with PSO

CPU: Central processing Unit

Cancer: Breast Cancer Wisconsin

CMC: Contraceptive Method Choice

BF-SSIFT: salient local visual features for 3D retrieval using bag of visual features

BF-DSIFT:dense sampling and fast encoding for 3D model retrieval using bag of visual features

BoF: Bag of features

DoG:difference-of-Gaussian function

BoW: Bag of words

PRNS: pseudo-random number sequences

QRNS: Quasi-Random Number Sequence

 N_v : Number of visual words in the codebook

ERC Trees: Extremely Randomized Clustering Trees

Enhanced RT: Enhanced Ray Tracing