<u>Diagnostic Role of Diffusion-</u> <u>weighted MR Imaging in Neck</u> <u>Masses.</u>

ESSAY
Submitted in partial fulfillment for
Master Degree in Radiology
By

Mohammed Salah El- Qusy
MB. B. Ch.

Supervised by

Dr. Amany Mohammed Rashad Abdel-Aziz

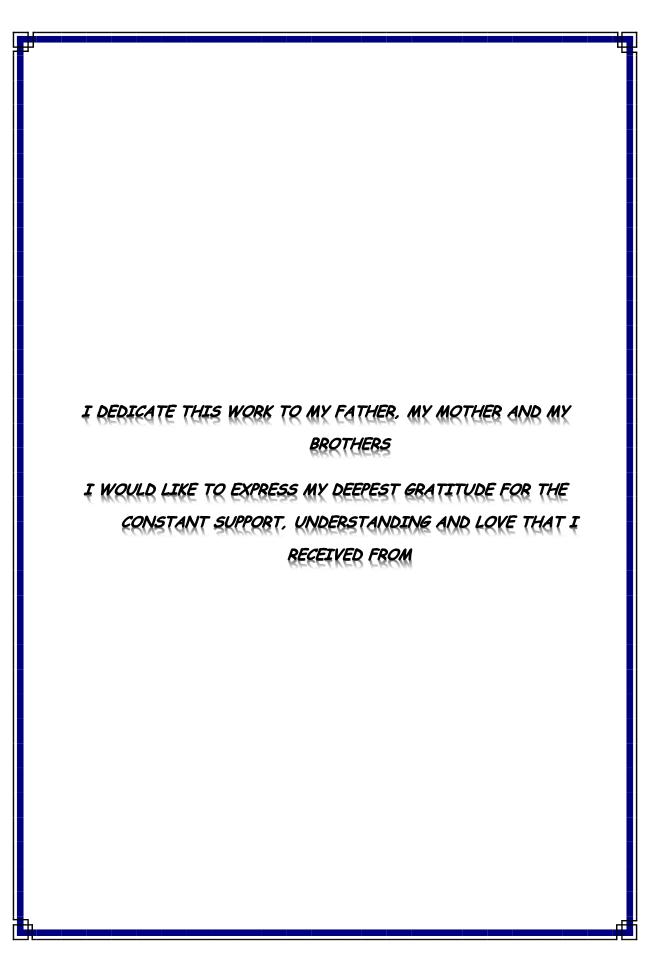
Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Amal Amin A. EL. Maati

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Radio diagnosis Department Faculty of Medicine Ain-Shams University 2011

بسم الله الرحمن الرحيم


(سورة الرحمن: الآية 1 و 2)

Acknowledgment

First and foremost thanks to the Allah the most kind and the most merciful.

- I wish to express my deep thanks to Prof. Dr. Amany Mohammed Rashad professor of radiodiagnosis, Faculty of medicine, Ain Shams University, for suggestion of the topic, her strict supervision, her great patience and great help to complete this work I cannot forget her sincere continuous encouragement and precious time given to follow and focus on the point of the research. I shall never forget her valuable criticism.
- I should pay my sincere gratitude to Dr. Amal Amin, Lecturer of radiodiagnosis, faculty of medicine Ain Shams University, for suggestion of the topic, her support, guidance and efforts in this work.
- I am also thanks for all members of the diagnostic radiology department, faculty of Medicine, Ain Shams University for their great help and support in preparation of this essay.

Mohammed Salah El-Qusy January-2011

LIST OF CONTENTS

	List of figures	II
	List of tabes	V
	List of abbreviations	VI
Ch.I	Introduction and aim of the work	1
Ch.II	Normal anatomy of the neck	5
Ch.III	MRI anatomy of the neck	35
Ch.IV	Pathology of neck masses	61
Ch. V	Principles and technique of diffusion weighted imaging	
CII. V		
Ch VI	MRI manifestations of neck masses	137
Ch	DWI manifestations of neck masses	177
VII		- ,
C.	Summary and conclusion	208
VIII		
Ch IX	References	213
Ch.X	Arabic summary	237

LIST OF FIGURES

Figure	Title	Page
1	Major cartilages of the larynx	7
2	Triangles of the neck	13
3	Suprahyoid region of neck	15
4	diagram of the suprahyoid spaces	18 & 19
5	Infrahyoid neck cervical fascia and spaces	22
6	Head and Neck Lymph Node Classifications	33
7	Normal thyroid gland MRI	37
8	Normal MRI of the salivary glands	38 & 39
9	Normal imaging anatomy of the suprahyoid neck spaces	42
10	Normal imaging anatomy of the suprahyoid neck axial sec.	43 & 44
11	Normal imaging anatomy of suprahyoid neck spaces on coronal nonenhanced T1W MRI	45 & 46
12	Normal axial magnetic resonance anatomy of infrahyoid neck	48
13	Normal sagittal and coronal magnetic resonance of infrahyoid neck	49
14	Normal sectional anatomy at the junction of the oral cavity and neck	51
15	Normal axial anatomy of the suprahyoid neck	52
16	Normal axial anatomy at the level of the hyoid bone	53
17	Normal axial anatomy at the level of the thyroid cartilages	54
18	Normal axial anatomy at the level of the cricoid cartilage	55
19	Normal axial anatomy at the level of the first tracheal ring	56
20	Normal parasagittal neck MRI	57
21	Normal sagittal view of the true and false vocal cords	58

22	Coronal MR image of the neck	59
23	Coronal image through the larynx shows the TAM	60
24	Squamous cell carcinoma histopathoogy	66
25	Epithelioid hemangioma	76
26	Schwannoma gross picture	85
27	Schwannoma microscopic picture	86
28	Paraganglioma Microscopic picture	88
29	Second branchial cleft tract	94
30	Pathway of the thyroglossal duct	96
31	Cervical thymic cyst	99
32	Drawing illustrates the three types of	102
	laryngocele	
33	Analogy of MRI signal to a gyroscope	120
34	Mechanism of T2 relaxation:	123
35	The flip angle	125
36	Gradients of Diffusion weighted MRI	128
37	Squamous carcinoma of the tongue base imaged MRI	139
38	Small lymph node with central nodal necrosis	142
39	Lipoma MRI axial and coronal	144
40	aggressive fibromatosis	146
41	MRI of right masticator space	148
	rhabdomyosarcoma	
42	MRI Hemangioma	149
43	MRI lymphangioma	150
44	Non-Hodgkin lymphoma of the neck with	151
	involvement of Waldeyer's ring	
45	MRI primary lymphoma	152
46	MRI Schwannoma of the brachial plexus	154
47	MRI Schwannoma of the sympathetic chain	154
48	MRI Solitary neurofibroma of the vagus nerve	155
49	MRI Carotid body tumour	156
50	T1 MRI teratoma	157
51	T MRI teratoma	159

52	Type II second branchial cyst axial MRI	160
53	Type II second branchial cyst Sagittal MRI	160
54	Thyroglossal duct cyst MRI	162
55	Cystic hygroma MRI	164
56	Dermoid cyst	165
57	external laryngoceles MRI	166
58	Plunging ranula.	167
59	pharyngocele	168
60	MRI neck abscess	170
61	Retropharyngeal space abscess. Sagittal T2-weighted MR	171
62	Dermatomyositis neck muscles MRI T1 WI	174
63	Recurrent squamous cell carcinoma of the	178
	oropharynx with metastatic cervical lymph nod	
64	Patient treated by chemoradiotherapy for	181
	oropharyngeal cancer	
65	Patient with Hodgkin lymphoma DW MRI	183
66	Patient with carcinoma of the tongue DW MRI	184
67	Patient with lymphadenitis DW MRI	186
68	well-differentiated squamous cell carcinoma of maxilla DW MRI	188
69	DW MRI neurofibroma	191
70	DW MRI Rhabdomyosarcoma	191
71	Ranula in the left sublingual and submandibular	195
	spaces DWI and MRI	
72	DW Images of a second branchial cleft cyst	196
73	DWI & MRI Pleomorphic adenoma in the right	197
	parotid gland	
74	Warthin tumor in the right parotid gland	198
75	MRI & DWI submandibuar abscess	201
76	DW MR images obtained in a case of primary	203
	tumour (epidermoid tumour	
77	Lymphadenitis DW MRI	204
78	Tuberculosis DW MRI	205

List of tables

Table	Title	page
Table 1	Staging of the normal LNs metastasis	69
Table 2	Ann Arbor Staging System of lymphoma	152
Table 3	ADC-values, true diffusion coefficients and	190
	perfusion fractions in soft tissue tumors	

List of abbreviations

ACS	anterior cervical space		
ADC	apparent diffusion coefficient		
AJCC	American Joint Committee on Cancer		
AVM	Arterio venous malformation		
AVM	arteriovenous hemangioma or malformation		
CD	cluster of differentiation		
CE-FAST	fast gradient echo		
CHL	Classical Hodgkin lymphoma		
CS	Carotid space		
CT	Computerized Tomography		
CXCR	chemokine receptor family		
DLBCL	Diffuse large B cell lymphoma		
DWI	Diffusion weighted imaging		
EBV	Epistein-Barr Virus		
EPI	Echo planar imaging		
FLASH	Fast Low Angle Shot Magnetic Resonance Imaging		
FSE	Fast spin echo		
Gd-DTPA	gadolinium Diethylene triamine pentaacetic acid		
HIV	human immunodeficiency virus		
HL	Hodgkin lymphomas		
LRP	The lateral retropharyngeal		
MALT	mucosa-associated lymphoid tumours		
MPNST	malignant peripheral nerve sheath tumours		
MP-RAGE	Magnetization Prepared Rapid Gradient Echo		
MRI	Magnetic resonance Imaging		
MRP	The medial retropharyngeal		
MS	Masticator space		
NEX	number of excitations		
NF	neurofibromatosis		
NHL	Non-Hodgkin lymphomas		
NLPHL	Nodular lymphocyte predominant Hodgkin		
	lymphoma		
NPV	negative predictive value		

PCS	The posterior cervical space		
PD	Proton density		
PET	positron emission Tomography		
PET	photon emission tomography		
PGL	persistent generalised lymphadenopathy		
PMS	Pharyngeal Mucosal Space		
PPPS	Prestyloid parapharyngeal space		
PPS	parapharyngeal space		
PPV	positive predictive value		
PS	Parotid space		
PSIF	reverted fast imaging with steady precession		
PVS	Prevertebral space		
REAL	European- American Lymphoma		
RF	The radio frequency		
RPPS	Retrostyloid parapharyngeal space		
RPS	Retropharyngeal space		
RPS	Retropharyngeal Space		
SCCs	squamous cell carcinoma		
SE	spin echo		
SENSE	sensitivity encoding		
SPECT	single photon emission CT		
SPIO	super-paramagnetic iron oxide		
SSFP	steady-state free-precession		
STIR	Short time inversion recovery		
T	tesla		
TAM	The thyroarytenoid muscle		
TE	Time to echo		
TR	Time to repeat		
UICC	Union Internationale contre Le Cancer		
USgFNA	ultrasound guided fine needle aspiration biopsy		
VS	The visceral space		
WHO	World Health Organization		
WR	Waldeyer's ring		

CHAPTER I

INTRODUCTION AND THE AIM OF THE WORK

INTRODUCTION

A neck mass is a common finding and can present a difficult diagnostic challenge. Differentiation of malignant neck tumours from benign lesions and accurate definite diagnosis are essential for treatment planning as well as for prognosis of malignant tumours. A variety of imaging techniques can help in characterization of neck masses. Ultrasound has a role in cystic lesions but it cannot determine the nature of solid masses. CT is associated with radiation exposure. Different routine pulse sequences of MR imaging cannot accurately differentiate benign from malignant tumours (*Abdel Razek et al.*, 2008).

Metabolic imaging with single photon emission CT (SPECT) and photon emission tomography (PET) can help this differentiation, but they are expensive, less available and have low spatial resolution. Ultrasound (US) and US guided fine-needle aspiration cytology (FNAC) have been extensively used, but this technique is invasive and operator-dependent with high incidence of false negative results that might result from aspiration of the wrong node or the wrong part of the correct node (sampling error) (*Abdel Razek et al.*, 2006).

Diffusion-weighted imaging is a magnetic resonance (MR) technique that shows potential in the characterization of lesions. It is a