

Faculty of Science

The Protective Role of Honey Bee Products Against the Genotoxic Effects of Endoxan in Male Mice

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of M.Sc in Zoology By

Heba Gamal Metwally Elalfy

B.Sc. (Zoology), 2005

Supervised by

Prof. Dr. Nagwa H. A. Hassan
Professor of Cytogenetics,
Zoology Department, Faculty
Of Science, Ain Shams
University

Prof. Dr. Samia Ahmed El-Fiky
Professor of Cytogenetics and
Embryology, Cell Biology
Department, National
Research Centre

Prof. Dr. Maha Aly Fahmy

Professor of Cytogenetics Genetics and Cytology Department National Research Centre

> Zoology Department Faculty of Science Ain Shams University

> > 2015

Faculty of Science

Approval Sheet

Name: Heba Gamal Metwally Elalfy

Title: The Protective Role of Honey Bee Products Against the Genotoxic Effects of Endoxan in Male Mice

Degree: M.Sc. (Zoology)

Approved by:

1- **Prof. Dr. Nagwa H. A. Hassan** Prof.r of Cytogenetics-Faculty of Science- Ain Shams University

2- Prof. Dr. Samia Ahmed El-Fiky Pro. of Cytogenetics and Embryology- National Research Centre

3-Prof. Dr. Karima Mohamed Swify Prof. of cytogenetic, faculty of women, Ain shams university

4-Prof. Dr. Mohamed Akmal *El-ghorr* Prof. of Molecular genetics, faculty of Sciences, Cairo University

Date of Examination: 2 / 11 /2015

ACINOWLEDGENENT

ACKNOWLEDGEMENT

First and foremost my deep gratefulness and indebtedness is to **Allah**, for helping me to overcome all problems which faced me throughout the work.

I wish to express my deep thanks and gratitude **to prof. Dr. Nagwa Hassan Ali Hassan** professor of Cytogenetics, Faculty of Science, Ain Shams University, for her scientific supervision of this thesis, valuable support, sincere guidance and her critical reading of the manuscript.

I would like to express my deep thanks to **prof. Dr. Samia Ahmed El-Fiky** professor of Cytogenetics and Embryology,
National Research Centre, for suggesting the subject of study,
valuable advice, continuous encouragement, sincere guidance and
her help during the work.

I would like to express my deep appreciation and sincere gratitude to **prof. Dr. Maha Aly Fahmy**, professor of cytogenetics, National Research Centre for suggesting the plane of the work, practical guidance, valuable advice, continuous encouragement as well as her discussions and critical review of the thesis. She spared no effort in guiding me towards the best.

Sincere thanks to **Dr. Ahmed M. Darwish,** researcher in molecular genetic field, National Research Centre, for his sincere guidance and help in statistical analysis.

CONTENTS

	Page
List of Tables	
List of Figures	
List of Abbreviations	
Aim of the Work	
Abstract	
I. Introduction	1
II. Review of literature	4
Cyclophosphamide	4
Mechanism of action	5
Side effects	6
Genotoxicity and oxidative stress	7
Reproductive toxicity	10
Histopathological side effects	13
Honey bee products	
1-Honey bee	16
Chemical composition of natural honey	17
Antioxidant properties of honey bee	20
Benefits and therapeutic properties of polyphenols in honey	21
Antimutagenic/ anticarcinogenic and apoptotic activities of honey	24
2-Royal jelly	29
Royal jelly composition	29
Therapeutic and nutritional properties	30
Antioxidant activity of royal jelly	31
Antigenotoxic effect of royal jelly	33
Protective effect of RJ on sperm parameters and male infertility	33

Hepatoprotective effect of royal jelly	35
3-Bee pollen	36
III. Materials and Methods	41
IV. Results	51
Chromosomal aberrations in mouse bone marrow	51
Effect of cyclophosphamide	51
Effect of cyclophosphamide and honey	58
Sperm shape abnormalities	67
Effect of cyclophosphamide	67
Effect of cyclophosphamide and honey	73
DNA fragmentation	80
Histopathological examination	83
Effect of cyclophosphamide	83
Effect of cyclophosphamide and honey	83
V.Discussion	90
VI. Summary	106
VII. References	108
Arabic summary	

LIST OF TABLES

Table No.		Page
(I)	Average composition of honey	19
(1)	Number and mean percentage of metaphases with chromosomal aberrations induced in mice bone marrow cells 24 h. after single i.p. treatment with cyclophosphamide.	54
(2)	Number and percentage of the different types of chromosomal aberrations induced in mice bone marrow cells 24 h. after single i.p. treatment with cyclophosphamide.	55
(3)	Number and mean percentage of metaphases with chromosomal aberrations induced in mice bone marrow cells after treatment with honey bee mixture and cyclophosphamide.	59
(4)	Number and percentage of the different types of chromosomal aberrations induced in mice bone marrow cells after treatment with honey bee mixture and cyclophosphamide.	63
(5)	Number and mean percentage of sperm abnormalities induced in male mice after i.p. treatment with cyclophosphamide.	69
(6)	Number and percentage of the different types of sperm abnormalities induced in male mice after i.p. treatment with cyclophosphamide.	70

(7)	Number and mean percentage of sperm abnormalities induced in male mice after treatment with honey bee mixture and cyclophosphamide.	74
(8)	Number and percentage of the different types of sperm abnormalities induced in male mice after treatment with honey bee mixture and cyclophosphamide.	77
(9)	Mean percentage of DNA fragmentation induced in mice liver cells 24 h. after single i.p treatment with cyclophosphamide.	81
(10)	Mean percentage of DNA fragmentation induced in mice liver cells after treatment with honey bee	82

 $mixture\ and\ cyclophosphamide.$

LIST OF FIGURES

Figure No.		Page
(1)	A normal metaphase from non- treated mouse bone marrow cells (control).	56
(2)	Metaphases from mice bone marrow after treatment with cyclophosphamide (20 mg/kg b.wt.).	57
(3)	Percentage of chromosomal aberrations induced after treatment with honey bee mixture and cyclophosphamide.	60
(4)	Percentage of metaphases with fragments and/ or breaks induced after treatment with honey bee mixture and cyclophosphamide	64
(5)	Percentage of metaphases with multiple aberrations induced after treatment with honey bee mixture and cyclophosphamide.	65
(6)	Metaphases from mice bone marrow after treatment with honey bee mixture and cyclophosphamide.	66
(7)	A normal sperm of non-treated mouse (control).	71
(8)	Sperm abnormalities induced in male mice after i.p. treatment with cyclophosphamide.	72
(9)	Percentage of sperm abnormalities induced after treatment with honey bee mixture and cyclophosphamide.	75
(10)	Percentage of coiled tail abnormality induced after treatment with honey bee mixture and cyclophosphamide.	78

(11)	Sperm abnormalities induced in male mice after treatment with honey bee mixture and cyclophosphamide.	79
(12)	Photomicrograph of a section of liver tissue from a control mouse.	84
(13)	Photomicrograph of a section of liver tissue from a mouse received honey for 5 days.	84
(14)	Photomicrograph of a section of liver tissue from a mouse received honey for 10 days.	85
(15)	Photomicrograph of a section of liver tissue from a mouse received honey for 15 days.	85
(16)	Photomicrograph of a section of liver tissue from a mouse received cyclophosphamide.	86
(17,18)	Photomicrographs of sections of liver tissue from mice received honey bee mixture for 5 days and cyclophosphamide.	87
(19,20)	Photomicrographs of sections of liver tissue from mice received honey bee mixture for 10 days and cyclophosphamide.	88
(21)	Photomicrograph of a section of liver tissue from a mouse received honey bee mixture for 15 days and cyclophosphamide.	89

LIST OF ABBREVIATIONS

ALDH Aldhyde dehydrogenase

APAP Acetaminophen

b.wt. body weight

BL Bleomycin

BP Bee pollen

BPPE Bee pollen phenolic extract

CAT Catalase

CDDP Cisplatin

Conc. Concentration

CP Cyclophosphamide

Del. Deletions

Dist. Distilled

DNA Deoxyribonucleic acid

DPPH 1,1-diphenyl-2-picryl-hydrasyl

EDTA Ethylenediaminetetra acetic acid

Endo. Endomitosis

Fig. Figure

Frag. Fragment

FRAP Ferric reducing/antioxidant power

GPX Glutathione peroxidase

GSH Glutathione

h. Hours

HM Honey mixture

HMF Hydroxymethyl furfural

HP Honey bee products

I.P. Intraperitoneal