Evaluation of stone die accuracy using different impression materials and techniques under dry and moist conditions

Thesis

Submitted to faculty of dentistry,
Crown and Bridge department,
Ain Shams University,
In partial fulfillment of the requirement for master degree in fixed prosthodontics.

BY

Dalia Magdi Mohamed Mahfouz Amin Helal

B.D.S. (2005)
Demonstrator in crown and bridge department
Faculty of dentistry,
Ain Shams University

Faculty of dentistry, Ain Shams University (2011)

Supervisors

Ass. Prof. Dr. Jihan Farouk Mohamed Younis

Assistant Professor of crown and bridge,
Faculty of dentistry,
Ain Shams University.

Ass. Prof. Dr. Mohamed Adel El-Demellawy

Assistant professor of crown and bridge, Faculty of dentistry, Ain Shams University بسم الله الرحمن الرحيم قالوا سبحانك لا علم لنا الا ما علمتنا انك انت العليم الحكيم

صدق الله العظيم (٣٢)سورة البقرة ايه

Dedication

Dedication

To those

who gave me so much

love,

care and support,

million thanks won't be enough

Acknowledgement

Acknowledgement

First of all, I would like to express my most sincere gratitude and deep appreciation to **Dr.Jihan Farouk**, Associate Professor of Crown and Bridge, Faculty of Dentistry, Ain Shams University. It was a great honor to work under her meticulous supervision and her valuable guidance.

My deepest thanks and appreciation to **Dr. Mohamed Adel El-Demellawy**, Associate Professor of Crown and Bridge, Faculty of Dentistry, Ain Shams University, for his remarkable help, valuable advice, constant support and encouragement during the course of this research.

Deep thanks and gratitude to **Dr. Amina Mohamed Hamdy,** Associate professor of Crown and Bridge Department, Faculty of dentistry, Ain shams University, for her valuable motherly advice, her constant guidance and unforgettable support and encouragement.

My special appreciation goes to **Dr. Tarek Salah El Din Morsi,** Associate professor of Crown and Bridge, Faculty of Dentistry, Ain Shams University, for his help and time spent on the work of this study and for his scientific guidance.

Special Thanks to **Dr. Amr Al Etriby**, Lecturer of Crown and Bridge, Faculty of Dentistry, Ain Shams University, for his wise opinions and helpful suggestions throughout this research.

I would like also to express my gratitude to my colleagues Dr. Fatma Adel, Dr.

Soha Osama and Dr. Andy Gabra for their unforgettable help and support.

Last but not least, I would like to thank all Staff Members of Crown and Bridge Department, Faculty of Dentistry, Ain Shams University, for their constant care, support, encouragement and assistance.

List of contents

Title		
Page No.		

* List of Tables	i
* List of Figures	ii
* Introduction	1
* Review of Literature	3
* Aim of the Study	45
* Materials and Methods	
* Results	80
* Discussion	111
* Summary	
* Conclusion	
* Recommendations	
* References	
* Arabic summary	
· · · · · · · · · · · · · · · · · · ·	

List of Tables

Table	Title	Page
No.		
1	The elastomeric impression materials	46
2	The grouping of the dimensional accuracy samples	58
3	The grouping of the detail reproduction samples	58
4	The means, standard deviations and discrepancy values of VPS	80
5	Dimensional accuracy of VPS impression material with two impression techniques under dry and moist conditions	81
6	Multifactorial Analysis of variance ANOVA comparing variables affecting dimensional changes of VPS impression material	82
7	The means, standard deviations and discrepancy values of Vinyl siloxanether	85
8	Dimensional accuracy of Vinyl siloxanether impression material with two impression techniques under dry and moist conditions	86
9	Multifactorial analysis of variance ANOVA comparing variables affecting dimensional changes of Vinyl siloxanether impression material	87
10	The means, standard deviations and discrepancy values of Polyether	90
11	Dimensional accuracy of Polyether impression material with two impression techniques under dry and moist conditions	91
12	Multifactorial analysis of variance ANOVA comparing variables affecting dimensional changes of Polyether impression material	92
13	Total dimensional discrepancy of different impression materials	95
14	Total dimensional discrepancy of different impression techniques	96

15	Total dimensional discrepancy under dry and moist conditions	97
16	The percentage of satisfactory and unsatisfactory impressions according to criteria based on ADA specification 19 for acceptable surface detail reproduction	99
17	The percentage of satisfactory and unsatisfactory impressions assessed with additional smooth surface evaluation	100
18	Detail reproduction of different elastomeric impression material	101
19	Surface smoothness score of different elastomeric impression materials	102
20	Detail reproduction of different impression techniques	107
21	Surface smoothness score of different impression techniques	108
22	Detail reproduction of different impression materials under dry and moist conditions	109
23	Surface smoothness score of different impression materials under dry and moist conditions	110

Figure	Title	Page	
No.			
1	Imprint II Garant Monophase impression material		
2	Imprint II Garant Light Impression material		
3	The caulking gun of Viva-dent Ivoclar with the cartridge	48	
	and the mixing tip attached to it		
4	Identium Medium impression material	49	
5	The Penta mix machine	50	
6	Identium Light impression material	50	
7	Impregum Penta impression material	51	
8	Permadyne impression material	52	
9	The plastic elastomeric syringe used with Permadyne	52	
	impression material		
10	Diagram of the master die for dimensional accuracy testing	53	
	(lateral and top view)		
11	The two standardized stainless steel master dies (I and II)	54	
	for dimensional accuracy testing		
12	Diagram of the master disc for detail reproduction testing	55	
	(lateral and top view)		
13	The two stainless steel master discs (I' and II') for detail	55	
	reproduction testing		
14	The custom made perforated brass mold for dimensional	56	
	accuracy testing		
15	The custom made perforated brass mold for detail	56	
	reproduction testing		
16	The injection of medium bodied consistency into the	59	
	custom made perforated brass tray		
17	The mixing of Permadyne base and catalyst on paper pad	60	
	by metal spatula in circular strokes		
18	Loaded elastomeric impression syringe with Permadyne	60	
10	impression material	6.1	
19	The injection of the light bodied material to the lined areas	61	
20	of die no. I for dimensional accuracy testing	C1	
20	Finger pressure to allow seating of the tray on the die	61	
21		(2	
21	The die and tray for dimensional accuracy testing held with	62	
	a C- shaped clamp		
22	The application of the medium bodied material into the	63	
22	custom made perforated brass tray for dimensional	03	
	accuracy testing		
23	The application of finger pressure to allow accurate seating	64	
24	The die with the applied impression material and the tray	65	
4	The die with the applied impression material and the tray	UJ	

	transferred into water bath		
25	The final impression for dimensional accuracy testing	65	
26	A stone die for dimensional accuracy testing	66	
27	The final impression for detail reproduction testing		
28	The Cerec- 3 machine		
29	The Cerec- 3 infra red camera	68	
30	The die for dimensional accuracy testing (I) and the disc for detail reproduction testing (I') with evenly applied powder for optical imaging	68	
31	The optical impression of the die I for dimensional accuracy testing	70	
32	A 3D optical impression of the die for dimensional accuracy testing from top view	71	
33	A 3D optical impression of the die for dimensional accuracy testing from axial view	71	
34	A 3D optical impression of the disc for detail reproduction testing	71	
35	Diagram showing the die for dimensional accuracy testing from top view (the red dots represent the 4 points measured on the finish line)	72	
36	A photo captured by the stereomicroscope of the stone die for dimensional accuracy testing from top view	73	
37	A photo captured by the stereomicroscope of the stone die for dimensional accuracy testing from axial view	73	
38	The 2 pins, the measuring line and the table showing the readings (measuring the distance between points X and Y)	74	
39	The 2 pins, the measuring line and the table showing the readings(measuring the height)	74	
40	The 2 pins, the measuring line and the table showing the readings (measuring the thickness of the finish line)	75	
41	A detail reproduction testing impression with complete continuity of the 3 lines (satisfactory)	75	
42	A detail reproduction testing impression with faint reproduction of line 3 (unsatisfactory)	76	
43	A detail reproduction testing impression with smooth, shiny and void free surface (satisfactory)	77	
44	A detail reproduction testing impression with multiple voids (unsatisfactory)	77	
45	An optical impression for detail reproduction testing with complete continuity of the 3 lines (satisfactory)	78	
46	An optical impression for the detail reproduction testing with interrupted lines 1 and 3 (unsatisfactory)	78	
47	Histogram of discrepancy mean values for VPS impression	81	

	material with two impression techniques under dry and moist conditions	
48	Box plots of discrepancy mean values for VPS impression material made with different techniques under dry and moist conditions (a= X-Y length, b= FL, c= Height)	83
49	Stone die resulted from VPS impression with single step technique under dry condition (top view)	84
50	Stone die resulted from VPS impression with two steps technique under dry condition (top view)	84
51	Stone die resulted from VPS impression with single step technique under moist condition (top view)	84
52	Stone die resulted from VPS impression with two steps technique under moist condition (top view)	85
53	Histogram of discrepancy mean values for Vinyl siloxanether impression material with two impression techniques under dry and moist conditions	86
54	Box plots of discrepancy mean values for VPS impression material made with different techniques under dry and moist conditions (a= X-Y length, b= FL, c= Height)	88
55	Stone die resulted from Vinyl siloxanether impression with single step technique under dry condition (top view)	89
56	Stone die resulted from Vinyl siloxanether impression with two steps technique under dry condition (top view)	89
57	Stone die resulted from Vinyl siloxanether impression with single step technique under moist condition (top view)	89
58	Stone die resulted from Vinyl siloxanether impression with two steps technique under moist condition (top view)	90
59	Histogram of discrepancy mean values for Polyether impression material with two impression techniques under dry and moist conditions	91
60	Box plots of discrepancy mean values for Polyether impression material made with different techniques under dry and moist conditions (a= X-Y length, b= FL, c= Height)	93
61	Stone die resulted from Polyether impression with single step technique under dry condition (top view)	94
62	Stone die resulted from Polyether impression with two steps technique under dry condition (top view)	94
63	Stone die resulted from Polyether impression with single step technique under moist condition (top view)	94
64	Stone die resulted from Polyether impression with two steps technique under moist condition (top view)	95
65	Histogram of total discrepancy mean values for different	96

	impression materials				
66	Histogram of total discrepancy mean values for different impression techniques	97			
67	Histogram of total discrepancy mean values under dry and moist conditions				
68	Histogram of lines detail reproduction scores of different elastomeric impression materials	101			
69	Histogram of surface smoothness scores of different elastomeric impression materials	102			
70	VPS impression with single step technique under dry condition	103			
71	VPS impression with two steps technique under dry condition	103			
72	VPS impression with single step technique under moist condition	103			
73	VPS impression with two steps technique under moist condition	104			
74	Vinyl siloxanether impression with single step technique under dry condition	104			
75	Vinyl siloxanether impression with two steps technique under dry condition	104			
76	Vinyl siloxanether impression with single step technique under moist condition	105			
77	Vinyl siloxanether impression with two steps technique under moist condition	105			
78	Polyether impression with single step technique under dry condition	105			
79	Polyether impression with two steps technique under dry condition	106			
80	Polyether impression with single step technique under moist condition	106			
81	Polyether impression with two steps technique under moist condition	106			
82	Histogram of line detail reproduction scores of different impression techniques	117			
83	Histogram of smoothness of surface scores of different impression techniques	108			
84	Histogram of line detail reproduction scores of different impression materials under dry and moist conditions	109			
85	Histogram of smoothness of surface scores of different impression materials under dry and moist conditions	110			

Evaluation of stone die accuracy using different impression materials and techniques under dry and moist conditions

Thesis

Submitted to faculty of dentistry,
Crown and Bridge department,
Ain Shams University,
In partial fulfillment of the requirement for master degree in fixed prosthodontics.

BY

Dalia Magdi Mohamed Mahfouz Amin Helal

B.D.S. (2005)

Demonstrator in crown and bridge department

Faculty of dentistry,

Ain Shams University

Faculty of dentistry, Ain Shams University (2011)