تأثير تصميم الهيكل للبنية الفوقية ومواقع نقاط التحميل على مقاومة الكسر للترميمات المستندة على غرسات

رسالة مقدمة الى كلية طب الفم والأسنان جامعة القاهرة تمهيدا للحصول على درجة الماجستير في الاستعاضات السنية المثبتة

من الطبيب/ ايهاب أحمد فرغلي بكالريوس طب وجراحة الفم والأسنان ه ٢٠٠٠

> كلية طب الفم والأسنان جامعة القاهرة ۲۰۱۰

تحت اشراف

أ.د./ أحمد زكي ماهر أستاذ بقسم الاستعاضات السنية المثبتة وكيل الكلية للدراسات العليا والبحوث (سابقا) كلية طب الفم والأسنان جامعة القاهرة

د./ الزهراء الدواخلي مدرس بقسم الاستعاضات السنية المثبتة كلية طب الفم والأسنان جامعة القاهرة

د./ أحمد فؤاد الراجي مدرس بقسم الهندسة المدنية كلية الهندسة جامعة الفيوم

The influence of Superstructure Framework Design and Point of Load Application on Fracture resistance of Implant-Supported Restorations

Thesis submitted to the

Fixed Prosthodontics Department

Faculty of Oral and Dental Medicine- Cairo University

In partial fulfillment of the requirements for Master Degree

In Fixed Prosthodontics

By
Ehab Ahmed Farghaly
BDS (2005)

Misr University for Science and Technology

Faculty of Oral and Dental Medicine

Cairo University

(2010)

Supervisors

Dr. Ahmed Zaki Maher

Professor of Fixed Prosthodontics,

Department of Fixed Prosthodontics,

Former Vice Dean,

Faculty of Oral and Dental Medicine

Cairo University

Dr. El Zahra El Dawakhly

Lecturer,

Department of Fixed Prosthodontics

Faculty of Oral and Dental Medicine

Cairo University

Dr. Ahmed Fouad El- Ragy

Lecturer,

Department of Civil Engineering

Faculty of Engineering

Fayoum University

ACKNOWLEDGMENT

I would like to express my gratitude and deep appreciation to Professor **Dr**. **Ahmed Zaki Maher**, Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for his valuable guidance, encouragement and interesting discussions and remarks during the preparation of this work and during all aspects of this investigation.

I am thankful to **Dr. El- Zahra El- Dawakhly**, lecturer of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her great efforts and continuous help and useful remarks she willingly gave me during my work. I am really great full for all her kindness and support.

I am greatly indebted to **Dr. Ahmed Fouad El- Ragy**, lecturer, Civil Engineering Department, Faculty of Engineering Fayoum University, with my sincere thanks and most appreciation for his great efforts in the part of Finite Element Analysis used in this study, for his continuous encouragement and advice during all stages of this work and for his remarkable suggestions in tabulation and presentation of the results.

Sincere thanks to the **Stuff Members**, of Fixed Prosthodontics Department, Faculty of Oral and Dental Medicine, Cairo University, for participating in making this work possible.

DEDICATION

This work is wholly dedicated to my dearest father to whom I owe my life, love and respect.

To my mother and my brothers for their encouragement and motivation.

And, to the beloved ones who shared times with me to make this work come to life

CONTENTS

	Page
Introduction	1
Review of literature	3
Statement of the problem	37
Aim of the study	38
Materials and methods	39
Results	73
Discussion	122
Summary	138
Conclusion	141
References	143

LIST OF TABLES

Table Number		Page Number
1	Chemical composition of Vita In-Ceram YZ blocks	40
2	Physical Properties of Vita In Ceram YZ Blocks	41
3	Physical Properties of Vita VM 9 Veneering Material	42
4	Modulus of elasticity and poisson's ratio of materials used in the FEA	67
5	Student t-test comparison between deflection mean values of the convex and concave FPD framework designs when applying 100 N on the molar connector region	74
6	Student t-test comparison between deflection mean values of the convex and concave FPD framework designs when applying 100 N on the premolar connector region	75
7	Student t-test comparison between deflection mean values of the convex and concave FPD framework designs when applying 100 N at the central fossa of the pontic	76
8	Student t-test comparison between first crack initiation mean values of the convex and concave FPD framework designs	77
9	Student t-test comparison between load at failure mean values of the convex and concave FPD framework design	78

10	Student t-test comparison between deflection mean values of the convex and concave FPD framework designs	79
11	Student t-test comparison between mean work values of the convex and concave FPD framework designs	80
12	Peak Of Maximum Stresses At Different Cross Sectional Areas	96
13	Chi square test comparison between stress values of the veneering ceramic at the molar connector region of the convex and concave FPD framework designs	115
14	Chi square test comparison between stress values of the veneering ceramic at the premolar connector region of the convex and concave FPD framework designs	116
15	Chi square test comparison between stress values of the veneering ceramic at the mid pontic region of the convex and concave FPD framework designs	117
16	Chi square test comparison between stress values of the zirconia framework at the molar connector region of the convex and concave FPD designs	118
17	Chi square test comparison between stress values of the zirconia framework at the premolar connector region of the convex and concave FPD designs	119
18	Chi square test comparison between stress values of the zirconia framework at the mid pontic region of the convex and concave FPD designs	120

LIST OF FIGURES

Figure Number	Titel	Page Number
1	Implant	39
2	Abutment	39
3	Vita InCeram YZ block	40
4	Vita VM 9 veneering material	41
5	Surveyor Attachment	44
6	Surveyor with the attachment	44
7	Stainless Steel Mold	45
8	Immersion of the fixture in the resin block	46
9	Epoxy resin block with implants	46
10	Convex Wax Pattern Framework	47
11	Concave Wax Pattern Framework	47
12	Optical Reflection Medium	48
13	InEos scanner	49
14	Tracing the margins of the framework	49
15	Sirona InLab milling machine	50
16	Block insertion in the milling chamber	50

17	convex Zirconia framework on its corresponding model	51
18	concave Zirconia framework on its corresponding model	51
19	Vita VM 9 Effect Bonder	51
20	Programat P 300 firing furnace	52
21	cementation of the bridge by the aid of cementing device	53
22	Bridge after cementation on its corresponding model	53
23	Static loading testing machine	54
24	Three Points Loading Rod	55
25	Static Loading of bridges	56
26	Somatom CT Scanning Machine	58
27	Visualization of C.T. images by MIMICS Mesio-distal view	59
28	Visualization of C.T. images by MIMICS Axial view	59
29	Bridge after Cropping	60
30	Segmentation and mask creation	61
31	Thresholding	61
32	Calculate 3D parameters	61
33	Visualization Of Assemblies	62
34	Refining and Remeshing of the assembly	63
35	Exported Convex Framework	63

36	Exported Concave Framework	63
37	Construction of Block, Implants, Abutments In ANSYS	65
38	Solid 72 Element outline	66
39	Solid 72 Element	66
40	Direction of movement of each node	66
41	Meshed bridge in ANSYS	68
42	Meshing construction in ANSYS of the whole model	68
43	Points of Load Application	68
44	Boundary condition	69
45	The relationship between force, displacement, stress, and strain	71
46	A column chart of deflection mean values of the convex and concave FPD framework designs when applying 100 N on the molar connector region	74
47	A column chart of deflection mean values for the convex and concave FPD framework designs when applying 100 N on the premolar connector region	75
48	A column chart of deflection mean values for the convex and concave FPD framework designs when applying 100 N at the central fossa of the pontic	76
49	A column chart of 1st crack initiation mean values for the convex and concave FPD framework design	77
50	A column chart of mean failure values for the convex and concave FPD framework design	78
51	A column chart of deflection mean values for the convex and concave FPD framework designs	79
52	A column chart of work mean values for convex and concave FPD framework designs	80

53	Representative of fractured convex FPD design	81
54	Representative of fractured concave FPD design	82
55	Cross section in the resin block	85
56	Third principal compressive stresses at the implants inside the block of the convex design	86
57	Von Mises stress in convex design	86
58	Von Mises stress in concave design	86
59	First principal tensile stress at implants of the convex design	87
60	First principal tensile stress at implants of the concave design	87
61	Third principal compressive stress at the implants of the convex design	88
62	Third principal compressive stress at the implants of the concave design	88
63	Von Mises stresses distribution pattern on implants of convex design	88
64	Von Mises stresses distribution pattern on implants of concave design	88
66	First principal tensile stress distribution on the convex framework occlusal view	89
67	First principal tensile stress distribution on the concave framework occlusal view	89

67	First principal tensile stress distribution on the convex framework gingival view	90
68	First principal tensile stress distribution on the concave framework gingival view	90
69	Third principal compressive stress distribution on the convex framework occlusal view	90
70	Third principal compressive stress distribution on the concave framework occlusal view	90
71	Third principal compressive stress distribution on the convex framework gingival view	91
72	The principal compressive stress distribution on the concave framework gingival view	91
73	Von Mises stress distribution on the convex framework occlusal view	92
74	Von Mises stress distribution on the concave framework occlusal view	92
75	Von Mises stress distribution on the convex framework gingival view	92
76	Von Mises stress distribution on the concave framework gingival view	92

77	First principal tensile stress distribution at the veneer of the convex design occlusal view	93
78	First principal tensile stress distribution at the veneer of the concave design occlusal view	93
79	First principal tensile stress distribution at the veneer of the convex design gingival view	93
80	First principal tensile stress distribution at the veneer of the concave design gingival view	93
81	Third principal compressive stress distribution at the veneer of the convex design occlusal view	94
82	Third principal compressive stress distribution at the veneer of the concave design occlusal view	94
83	Third principal compressive stress distribution at the veneer of the convex design gingival view	94
84	Third principal compressive stress distribution at the veneer of the concave design gingival view	94
85	Von Mises stress distribution at the veneering ceramic of the convex design occlusal view	95
86	Von Mises stress distribution at the veneering ceramic of the concave design occlusal view	95