معدل حدوث العيوب الخلقية في الأطفال حديثي الولادة داخل وحدات حديثي الولادة بمستشفيات جامعة القاهرة

رسالة مقدمة من الطبيبة/ رندا إبراهيم ناصف الدسوقى طه توطئه للحصول على درجة الدكتوراه فى طب الأطفال

المشرفين أد سوسن عبد الهادى هلال أستاذ طب الأطفال ورئيس وحدة الوراثة كلية الطب – جامعة القاهرة

> أ.د. ناهد فهمى هلال أستاذ طب الأطفال كلية الطب جامعة القاهرة

أ.د. آمال محمود محمد أستاذ الوراثة البشرية المركز القومى للبحوث

كلية الطب جامعة القاهرة ٢٠٠٧

INCIDENCE OF CONGENITAL MALFORMATIONS AMONG NEONATES ADMITTED TO CAIRO UNIVERSITY NEONATAL UNITS

Thesis
Submitted for partial fulfillment of M.D. degree in pediatrics

By
Randa Ibrahim Nassif El-Desouky Taha
M.B., B. Ch., M.Sc. Pediatrics

Supervisors

Dr. Sawsan Abdel Hady Hasan

Professor of Pediatrics & Genetics

Cairo University

Dr. Nahed Fahmy Helal
Professor of Pediatrics
Cairo University

Dr. Amal Mahmoud Mohamed
Professor of human genetics
National Research Center

Faculty of Medicine Cairo University 2007

بسم الله الرحمن الرحيم

Acknowledgement

I would like to express my deepest appreciation as well as my profound gratitude and thanks to my eminent *Professor Doctor/ Sawsan Abdel-Hady*, professor of pediatrics and director of genetics unit, Cairo University, for her kind supervision, helpful advice and great encouragement. I hope I have been able to fulfill her aim of scientific accuracy.

I would like to thank *Professor Doctor/ Nahed Fahmy* Professor of neonatology Cairo University for her valuable help and criticism, she was generous with her time and effort.

I feel also greatly indebted to *Professor Doctor/ Amal Mahmoud* professor of human genetics and her colleague *Professor Doctor/ Alaa Kamel* for the great effort they spent to produce my genetic laboratory study in the best accurate way.

Words can not express my gratitude to *Professor Doctor/ Naser Abdel Aal* and his team for facilitating my work during the study period .

I wish heartily to thank my friend *Professor Doctor/ Soha Abdel-Daem* for her sincere assistance.

Last, but not the least, I give my deepest thanks to my family, my friends and colleagues for their help and forbearance while I was engaged in this work.

To my family and my patients

Table of contents

	Page
Introduction	1
Aim of the work	3
Morphogenesis and Dysmorphogenesis	4
Dysmorphogenesis	6
Etiological Factors of congenital Malformations	9
Clinical Types	28
Approach to the dysmorphic child	31
Genetic Counseling	36
Prenatal Diagnosis	38
Highlights on some congenital malformation disorders	42
Patients and Methods	61
Results	65
Discussion	130
Conclusion and summary	139
Recommendations	141
References	143

List of Tables

		page
Table (A):	Malformations resulting from specific aberrant	7
	developmental mechanisms	
Table (B):	Provides framework for thinking about causes of	9
	birth defects.	
Table (C):	Estimated incidence of causes of major congenital	11
	anomalies.	
Table (D):	Agents acting on pregnant women that may	23
	adversely affect the structure or function of the	
	fetus.	
Table (E):	Important points in history taking.	31
Table (F):	Indications for genetic counseling.	37
Table(G):	Embryological Classification.	57
Table 1:	Descriptive data of the babies and their mothers.	70
Table 2:	Frequency distribution of different types of	75
	anomalies among the studied group.	
Table 3:	Distribution of anomalies according to gender.	76
Table 4:	Distribution of anomalies according to gestational	78
	age at time of delivery.	
Table 5:	Distribution of anomalies according to weight of	80
	the infant.	
Table 6:	Distribution of anomalies according to presence	82
	or absence of consanguinity.	
Table 7:	Outcome of Studied Cases.	84
Table 8:	Residence of Studied Cases.	85
Table 9:	Monthly distribution of studied babies.	87
Table 10:	Percentage of system affected in relation to	90
	months of birth.	

		page
Table 11:	Data of babies with GIT anomalies (N= 238	94
	cases: 61 % of total studied babies).	
Table 11:	Data of babies with GIT anomalies (N= 238	95
	cases: 61 % of total studied babies) continue.	
Table 12:	Data of babies with urinary anomalies (N= 30	96
	cases: 7.7 % of total studied babies).	
Table 13:	Data of babies with CVS anomalies (N= 114	97
	cases: 29.2% of total studied babies).	
Table 14:	Data of babies with musculoskeletal anomalies	98
	(N= 81 cases: 20.8 % of total studied babies).	
Table 15:	Data of babies with respiratory anomalies (N= 10	99
	cases: 2.6 % of total studied babies).	
Table 16:	Data of babies with eye, face and nose anomalies	99
	(N=9 cases: 2.3 % of total Studied Babies).	
Table 17:	Data of babies with other congenital anomalies	100
	(N= 18 cases: 4.6 % of total studied babies).	
Table 18:	Data of babies with cleft lip and palate	100
	anomalies (N= 9 cases: 2.3 % of total studied	
	babies).	
Table 19:	Data of babies with chromosomal anomalies (N=	101
	15 cases: 3.8 % of total studied babies).	
Table 20:	Data of babies with genital anomalies (N= 16	101
	cases: 4.1 % of total studied babies).	
Table 21:	Data of babies with neoplastic anomalies (N= 19	102
	cases: 4.9 % of total Studied Babies).	
Table 22:	Data of babies with CNS anomalies (N= 29 cases	103
	: 7.4 % of Total Studied Babies).	
	1	

List of Figures

	List of Figures	
Page		
16	Structural rearrangements in chromosomes.	Fig (A):
33	An approach to the dysmorphic infant or child	Fig (B):
	with a single anomaly.	
71	Showing the percent of cases with multiple	Fig. (1):
	anomalies	
71	Gestational age of the studied babies	Fig. (2):
72	Birth weight of the studied babies	Fig. (3):
72	Mode of delivery of the studied babies	Fig. (4):
73	Maternal medical history of the studied babies	Fig. (5):
73	Mothers with positive obstetric history	Fig. (6):
74	Consanguinity of the studied babies	Fig. (7):
75	Frequency distribution of different types of	Fig. (8):
	anomalies among the studied group	
77	Distribution of anomalies according to gender	Fig. (9):
79	Distribution of anomalies according to gestational	Fig. (10):
	age at time of delivery	
81	Distribution of anomalies according to weight of	Fig. (11):
	the studied babies	
83	Distribution of anomalies according to presence	Fig. (12):
	or absence of consanguinity	
83	Postnatal age at presentation of the studied babies	Fig. (13):
84	Outcome of the studied babies	Fig. (14):
86	Residence of studied babies	Fig. (15):
88	Seasonal distribution of the studied babies	Fig. (16):
89	Parity of the studied babies	Fig. (17):
89	Maternal age of the studies patients	Fig. (18):
91	Monthly distribution of GIT anomalies cases	Fig. (19):
	(N=238 babies, 61% from all cases)	
91	Monthly distribution of circulatory anomalies	Fig. (20):
	cases (N= 114 babies, 29.2% from all cases)	
91	Monthly distribution of CNS anomalies cases	Fig. (21):
	(N=19 babies, 7.4% from all cases)	
91	Monthly distribution of urinary system anomalies	Fig. (22):
	cases (N = 30 babies, 7.7% from all cases)	
92	Monthly distribution of respiratory system	Fig. (23):
	anomalies cases (N= 10 babies, 2.6% from all	

	cases)	
92	Monthly distribution of eye, face and nose	Fig. (24):
	anomalies cases (N= 9 babies, 2.3% from all	
	cases)	
92	Monthly distribution of genital system anomalies	Fig. (25):
	cases (N = 16 babies, 4.1% from all cases)	
92	Monthly distribution of cleft lip & Palate	Fig. (26):
	anomalies cases ($N = 9$ babies, 2.3% from all	
02	Cases)	E:~ (27).
93	Monthly distribution of chromosomal anomalies cases (N=15 babies, 3.8% from all cases)	Fig. (27):
93	Monthly distribution of other congenital	Fig. (28):
	anomalies cases (N=18 babies, 4.6% from all	1 1g. (20).
	cases)	
93	Monthly distribution of congenital neoplasm	Fig. (29):
	anomalies cases ($N = 19$ babies, 4.9% from all	
	cases)	
93	Monthly distribution of musculoskeletal	Fig. (30):
	anomalies cases (N=81 babies, 20.8 % from all	
	cases).	
104	Holoprosencephaly with microphthalmia and	Fig. (31):
104	midline defects.	E:- (22).
104	C.T Brain of the same case.	Fig. (32):
105	Holoprosencephaly with preauricular skin tags	Fig. (33):
106 106	Microcephaly with meningoencephalocele Spina bifida with lipoma and hair tuft	Fig. (34):
107	Anterior encephalocele	Fig. (35):
107	Male set of Thoracoomphalopagus	Fig. (37):
109	Male set of transpagus Male set of craniopagus	Fig. (38):
110	Female set of Thoracoomphalopagus	Fig. (39):
111	Pygomelia with ectopia vesica	Fig. (40):
112	Amniotic Band disruption	Fig. (41):
113	Exomphlos Major	Fig. (42):
114	Male with cloacal extrophy	Fig. (43):
114	Female with cloacal extrophy	Fig. (44):
115	Ectopia vesica	Fig. (45):
115	Pelviperianal anomaly	Fig. (46):
116	Male Sirenomelia	Fig. (47):

116	Epidermolysis Bullosa	Fig. (48):
117	Beckwith Wiedemann	Fig. (49):
117	VATER Association	Fig. (50):
118	Arthrogryposis	Fig. (51):
118	Absent Tibia	Fig. (52):
119	Waardenburg syndrome with HSD	Fig. (53):
119	Ehler Danlos	Fig. (54):
120	Emberional fibrosarcoma	Fig. (55):
120	C.T. Lower limb of the same case	Fig. (56):
121	Huge Hemangioma	Fig. (57):
121	C.T. abdomen of the same case	Fig. (58):
122	Sacrococcygeal teratoma	Fig. (59):
122	Sacrococcygeal teratoma	Fig. (60):
123	Cervical cystic hygroma	Fig. (61):
123	Right foot cystic hygroma	Fig. (62):
124	Chromosome 9 pericentric inversion (normal	Fig. (63):
	variant)	
125	Dysmorphic neonate	Fig. (64):
126	Trisomy 13 (Patau syndrome)	Fig. (65):
127	Aphalia with chromosome 5 pericentric inversion	Fig. (66):
128	Miller Diecker syndrome	Fig. (67):
128	C.T. brain of the same case with Lyssencephaly	Fig. (68):
129	Dwon syndrome	Fig. (69):

List of Abbreviations

A.V. Canal Atrioventricular canal

AFP Alpha fetoprotein

ASD Atreal septal defect

B. of ledd Bands of ledd

CDH Congenital diaphragmatic hernia

CHARGE Coloboma of the eye, Heart, Atresia Choana

anomalies, retardation of mental and somatic

development microphillus, Ear anomalies or deafness.

CHPS Congenital hypertrophic pyloric stenosis

CNS Central nervous system

Confluent P.A. Confluent pulmonary artery

CVS Cardiovascular system

DNA Deoxyriboneuclic acid

duod. atresia Duodenal atresia

dup Duplication

EB Epidermolysis bullosa

FISH Florescence in situ hybridization

H.I. anus High imperforate anus

H.S.D. Hürschsprung disease

HLA Human leucocytic antigen

HPE Holoprosencephaly

i(xq) Isochromosome for Xq

IGUR Intrauterine growth retardation

ILS Isolate lyssencephaly sequence

Jeuj. atresia Jeujenal atresia

L.I. anus Low imperforate anus

LBW Low birth weight

Malposition of G.V. Malposition of great vessels

MIHV Middle interhemispheric variant

MLPA Multiple ligation probe Amplification

NTDs Neural tube defect

p Short arm of chromosome

PCR Polymerase chain reaction

PDA Patent ductus arteriosus

PFO Patent foramen oval

PKU Phenylketonuria

q Long arm of chromosome

SHH Sonic hedge hog

TOF Tracheoesophageal Fistula

TR Tricuspid regurge

VACTERL Vater+Renal anomalies + cardiac

VACTERL-H Vacterl-Hydrocephalus

VATER Vertebral defect, Anal atresia, Tracheoesophagial

fistula with esophageal atresia, Radial displasia

VSD Ventricular septal defect

Introduction

A normal birth is always regarded as a logical, natural event. But for any reason, a deviation occurs, the malformation is received with a sense of fear and horror, but at the same time as an evincing example of the power of God (Mazzola et al., 1990).

Birth defects, congenital malformations, and congenital anomalies are all encompassing terms currently used to describe developmental defects present at birth (L. Congenitus, born with). Birth defects may be structural, functional, metabolic, behavioral or hereditary (Moore and Persaud, 1993).

An endless list of giants, dwarfs, conjoined twins, Cyclops and anencephalic creatures fill the literature of the sixteenth and seventeenth centuries. Numerous reports on semihuman beings were invented as the result of bestiality and sexual perversions. Mothers of deformed children were considered witches and burnt at the stake for having an affair with the devil (Schenk, 1609; Licetus, 1634; Schot 1667 and Van Meekeren, 1682).

The consept that malformed children were to be taken as a warning was very popular not only in ancient civilizations but also later, in the period from the Middle Ages to the eighteenth century. It is, however, very interesting to note that this idea is still deeply rooted in some populations of Africa and Latin America (Mazzola, et al., 1990).

The population risk for medically significant birth defects is approximately 3% of all live-born infants. However, not all birth defects are detected at birth, for example, some forms of kidney disorders, congenital heart disease, and mental retardation are diagnosed later in life.

So by adulthood the percent will rise to 7% of the population (Elias, et al., 2005). Congenital anomalies cause 10% of all neonatal deathes (Cassidy and Whiteman, 1996).

Egypt's rapidly growing population has an estimated rate of natural increase of 2.9% (**Courbage and Khlat, 1993**). This population is highly inbred. There are no significant intercultural, multiethnic, and interreligious marriages, and only recently has migration been common among Egyptians.

Fetal death and adverse outcome of pregnancy are quite high among Egyptian's. Six percent of all still born and 16% of all pregnancies end in miscarriages. Miscarriages increase to 21% if there is a history of birth defect in a previous pregnancy. In a study of birth defects among Egyptian, it was found that 11% of birth defects were attributed to singlegene defects, 31% were chromosomal in origin, 54% were due to multifactorial etiology, and 4% were environmental. A history of using teratogenic substances was found in 17% of cases of birth defects compared to 3% among the general population (**Hashem, 1980**).