Disability in Workplaces

Thesis

SUBMITTED FOR FULFILLMENT OF THE MASTER DEGREE IN FORENSIC MEDICINE AND CLINICAL TOXICOLOGY

MOHAMED EL HAFIZ ABDEL BAGI NOURI

M.B., B. Ch., University of Khartoum SUDANESE FEDRAL MINISTRY OF HEALTH SUDAN

Supervised By

PROF. DR. HODA ABDEL MEGUID EL GHAMRY

PROFESSOR OF FORENSIC MEDICINE AND CLINICAL TOXICOLOGY FACULTY OF MEDICINE – CAIRO UNIVERSITY

ASS.PROF. DR. AMANY SALAH MOHAMMAD

ASSISTANT PROFESSOR OF FORENSIC MEDICINE AND CLINICAL TOXICOLOGY FACULTY OF MEDICINE – CAIRO UNIVERSITY

DR. DINA SULIEMAN BADRAN

LECTURER OF FORENSIC MEDICINE AND CLINICAL TOXICOLOGY FACULTY OF MEDICINE – CAIRO UNIVERSITY

FACULTY OF MEDICINE CAIRO UNIVERSITY 2010

Acknowledgment

First and forever, thanks to...... Allah

It is a pleasure to thank those who made this thesis possible.

I want to thank all my teachers and colleagues in the department of forensic medicine and clinical toxicology, faculty of medicine, Cairo University.

I am deeply indebted to Prof.Dr.Dina Shokry; professor and head department of forensic medicine and clinical toxicology faculty of medicine, Cairo University for her continuous support, valuable guidance and great advices.

I wish to express my gratitude to my supervisor, Prof. Dr. Huda Elghamry who was abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude is also due to the members of the supervisory committee, Assoc. Prof. Dr. Amany Salah and Dr. Dina Badran without their knowledge and assistance this study would not have been successful.

I would also like to convey thanks to the institute of forensic medicine (Ministry of Justice) with special thanks to Dr. El-Sebaey Ahmed El-Sebaey. Not forgetting my collegues and all staff members of the institute.

I am particularly grateful to the Fedral Ministry of Health, Sudan-my workplace- for great support.

I wish to express my love and gratitude to my beloved family and my close freinds; for their understanding & endless love, through the duration of this study.

Contents

Subjects	
Acknowledgment	i
Contents	ii
List of tables, figures and abbreviations	iii-vii
Introduction and aim of the work	1
Review of literature	4
I- Injuries	4
II- Workplace Injuries	10
III- Disability	29
IV- Compensation and Preventive Measures	40
Methodology	49
Results	53
Discussion	78
Summary	91
Conclusion and Recommendations	93
Appendix	I-VI
References	97
الملخص العربي	110

List of tables

No.	Title	page
Table 1	Difference between injury and disease	6
Table 2	Mechanism of injury matched with the place of injury occurrence	15
Table 3	Types of Hazards Found at Work	17
Table 4	Schema for assessing non-fatal health outcomes	31
Table 5	Frequency of workplace disability claims in each year (2008 and 2009)	53
Table 6	Distribution of gender among disability cases	54
Table 7	Frequency of cases regarding different age groups	55
Table 8	Mean age + SD and its range	56
Table 9	Distribution according to residence	57
Table 10	Distribution of cases according to work nature	58
Table 11	The mean age <u>+</u> SD according to work nature	59
Table 12	Classification of work nature into general and private sectors and their distribution	60
Table 13	Distribution of workplace disability cases according to the month in which injury occurred	61
Table 14	Distribution of cases according to part of the body injured	62
Table 15	Pair organs percentage (hands, feet, upper limbs, lower limbs, eyesetc)	63
Table 16	Occupational injuries distributed according to the event leading to injury	64
Table 17	Distribution of injury type among disability cases	66
Table 18	Distribution of injury type according to age categories	68
Table 19	Distribution of cases according to claim	69

Table 20	Relation between claim and disability percentage recorded	70
Table 21	Disability percentage ranges (According to MLE assessment	71
Table 22	Relation between parts injured and their disability percentage range	73
Table 23	Relation between main types of injuries and their disability percentage range	74
Table24	The rating percentage difference according to event	75
Table25	Relation between event and age group	76
Table 26	Relation between rating percentage and different age groups	77

List of figures

No.	Title	page
Figure 1	Frequency of injuries classified according to severity(Injury Pyramid)(CDC,2005)	9
Figure 2	Structure of accidents (Jovica et al,2004)	14
Figure 3	Percent change in incidence rate and illnesses by events (BLS, 2005)	24
Figure 4	Dorsiflexion test	37
Figure 5	Plantar flexion test	37
Figure 6	Maximum lift, upper range	38
Figure 7	Compensatory mechanics, lower lift	38
Figure 8	Maximum lift, lower range	39
Figure 9	Edema in left leg	39
Figure 10	Frequency of workplace disability claims in each year (2008 and 2009).	53
Figure 11	Distribution of gender among disability cases	54
Figure 12	Frequency of cases regarding different age groups	56
Figure 13	Distribution according to residence	57
Figure 14	Distribution of cases according to work nature	58
Figure 15	Classification of work nature into general and private sectors and their distribution	60
Figure 16	Distribution of cases according to part of the body injured	62
Figure 17	Pair organs (hands, feet, upper limbs, lower limbs eyesetc)	63
Figure 18	Occupational injuries distributed according to the event leading to injury	65
Figure 19	Distribution of injury type among disability cases	67

Figure 20	Disability percentage ranges	72
	(According to MLE assessment)	12

List of Abbreviations

AMA Guides	American Medical Association's Guides to the Evaluation	
	of Permanent Impairment	
AOE	Arising out of employment	
BLS	Bureau of Labour and Statistics	
CDC	Centers for Disease Control and Prevention	
COE	"Course of employment"	
dB	Decibel	
EDs	Emergency departments	
FB	Foreign body	
FCE	Functional Capacity Evaluation	
FUPIRS	Florida Uniform Permanent Impairment Rating Schedule	
ICD-10-AM	International Statistical Classification of	
	Diseases and Related Health Problems, 10th	
	revision, Australian Modification	
ILO	International labour Organization	
JAMA	Journal Of the American Medical Association	
MLE	Medico Legal Expert	
MMI	Maximal medical improvement	
NDS-IS	National Data Standards for Injury Surveillance	
NEISS	National Electronic Injury Surveillance System	
NIHL	Noise-Induced Hearing Loss	
NIOSH	National Institute of Occupational Safety and Health	
OI	Occupational Injury	
OP	Occupational Physician	

OSHA	Occupational Safety and Health Administration
РАНО	Pan American Health Organization
PEI	Prince Edward Island
SPSS	statistical package for the social science
SSA	The Social Security Administration
TBI	Traumatic brain injury
US	United States
WHO	World Health Organization

Disability in Workplaces

Abstract

Work-related injuries and their disabling outcome remain a pressing worldwide health issue. Thorough knowledge of the trends of workplace disabilities is essential for development of strategies to better assessment and fair judgment. This study examines the circumstances, nature of the occupational injuries and disability among workers presented to the Forensic Medicine Authority in Cairo, Ministry of Justice during two years (2008 and 2009). The information used in this study obtained from reports written by Medico Legal Experts. There were a total of 142 cases of workplace disabilities in different establishments. The mean age was 31.8 years Most cases lie between 18 and 34 years of age. There were 10 adolescents below 18 years and 4 elderly above 60 years of age among the sample. **Limitation of joint movements** was the most frequent type of injury (49.3%), followed by Fractures and Nerve, tendon or muscle injuries (26.8%) each and then came amputation (21.8%). Caught by machine was the most frequent event (40%), followed by **falls/slips** (20%) then **hit by object** (13.4%). **Hands** were the most affected part of the body (28.2%) followed by the back (14.1%) then lower limbs (13.4%). After assessment by MLE, the highest number of workplace disabilities fell in the (0-20%) range presented in 86 victims (60.6%). Disabilities due to falls/slips and being hit by object scored the highest rating percentages, while sitting or standing for long periods scored the least.

Key words: workplace, disability, Medico-legal Expert (MLE).

INTRODUCTION

Workers represent half the world's population and are the major contributors to economic and social development. Their health is determined not only by workplace hazards but also by social and individual factors and access to health services (WHO, 2007).

Work related injuries are a worldwide health problem because they involve a great number of workers, especially young people at productive age. They are also highly disabling, leading to major social and economic consequences (**Roberta et al., 2007**).

A substantial part of the general morbidity of the working population is related to work. The ultimate goal of ensuring that all workers in the world enjoy full physical and mental health is still far from being achieved. Despite the availability of effective interventions for occupational health, too many workers are still exposed to unacceptable levels of occupational risks and fall victim to occupational diseases and work accidents, lose their working capacity and income potential, and still too few have access to occupational health services (WHO, 2006).

According to the fifth edition of the Guides to the Evaluation of Permanent Impairment, published by the American Medical Association (AMA), disability is defined as "an alteration of an individual's capacity to meet personal, social, or occupational demands because of impairment" (Cocchiarella et al., 2000).

Disability may be temporary or permanent, and it may be partial or total (**Edward, 2008**).

According to the **AMA Guides**, impairment is an alteration of an individual's health status that has been assessed by medical means. Impairment is used to describe a static or stable condition that has had sufficient time to allow optimal tissue repair and that is unlikely to change, despite further medical or surgical therapy. **The Florida Impairment Schedule** defines impairment as anatomic or functional abnormality or loss after maximal medical improvement (MMI) has been achieved (**Hunter**, 2005).

Many workers' compensation systems allow for partial disability, generating a need for the AMA Guides to measure the extent of the impairment as related to normal functional capacity (Edward, 2008).

All injuries or occupational diseases deemed compensable must "arise out of" or occur "in the course of" employment. This confirms the idea that the work-related injury or occupational exposure would not have occurred had the employee been engaged in non-work-related activities (**Kelly, 2010**).

Disability evaluation and rehabilitation professionals do not always agree on nomenclature and specific methodologies, and as a result, both the meaning and practice of assessing occupational disability vary (Jasen and Stacy, 2009).

This work was designed to promote forensic examination and assessment of workers disabilities- due to workplace accidents- in order to make workers compensation claims in front of civil courts more subjective, obvious and fair.

Aim of the work:

This work aims at studying the cases of disability in workplaces examined at Forensic Medicine Authority in Cairo through two years (2008 and 2009) to determine: Type of injury, Part of the body injured, Direct cause(event), Occupation, workplace and disability rating percentage. Gender, age group and residency are also put in concern.

I- INJURIES

• Definition:

The standard definition of an "injury" as used by WHO is: "Injuries are caused by acute exposure to physical agents such as mechanical energy, heat, electricity, chemicals, and ionizing radiation interacting with the body in amounts or at rates that exceed the threshold of human tolerance. In some cases (for example, drowning and frostbite), injuries result from the sudden lack of essential agents such as oxygen or heat" (**Krug et al., 2002**).

Classification:

Injuries may be categorized in a number of ways; however, for most analysis purposes and for identifying intervention opportunities, it is especially useful to categorize injuries according to whether or not they were intentionally inflicted and by whom. According to **Holder**, et al. (2001) commonly used categories are:

- Unintentional (i.e. accidental); include road traffic injuries, falls, burns, poisoning, and drowning.
- ❖ Intentional (i.e. deliberate):
 - Interpersonal (e.g. assault and homicide)
 - self-harm (e.g. abuse of drugs and alcohol, self-mutilation, suicide)

- Legal intervention (e.g. action by police or other law enforcement personnel)
- War, civil insurrection and disturbances (e.g. demonstrations and riots)

Undetermined intent.

Injuries are also classified based upon the place of injury: domestic injuries, injuries at public places, and the settings of injuries: recreational injuries and occupational injuries (including industrial and agricultural injuries) (WHO, 2002).

• Mechanism:

The energy causing an injury may be:

- Mechanical (e.g. an impact with a moving or stationary object, such as a surface, knife or vehicle)
- * Radiant (e.g. a blinding light or a shock wave from an explosion)
- ❖ Thermal (e.g. air or water that is too hot or too cold)
- Electrical
- Chemical (e.g. a poison or an intoxicating or mindaltering substance such as alcohol or a drug)

(Holder et al., 2001).