In vitro activity of tigecycline against clinical isolates of extended- spectrum beta- lactamase- producing Gram negative bacilli

thesis

Submitted for partial fulfillment of master degree in medical microbiology and immunology

Presented by

Omima Sayed Mohammed M.B.B.Ch, Ain Shams University

Under supervision of

Prof.Dr. Sanaa Mohammed Ibrahim

Professor of medical microbiology and immunology Faculty of medicine, Ain Shams University

Prof.Dr.Hamed Hussein Abo Steit

Assistant professor of general surgery Faculty of medicine, Ain Shams University

Dr. Lamiaa Abd EL Monem Adel

Lecturer of medical microbiology and immunology Faculty of medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2011

النشاط الخارجى للتيجيسيكلين ضد العصويات سالبة الجرام المنتجة لمحللات البيتا لاكتام واسعة المجال في المعزولات الاكلينيكية.

ر سالة

توطئة للحصول على درجة الماجستير في الميكروبيولوجيا الطبية والمناعة

مقدمة من

الطبيبة/ اميمة سيد محمد

بكالوريوس الطب والجراحة كلية الطب جامعة عين شمس

تحت اشراف

اد / سناء محمد ابرامیم

استاذ الميكر وبيولوجيا الطبية والمناعة كلية الطب جامعة عين شمس

د/ حامد حسین ابم ستیت

استاذ مساعد الجراحة العامة كلية الطب جامعة عين شمس

المزعم عادل المراح المر

مدرس الميكروبيولوجيا الطبية والمناعة كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس 2011

CONTENTS

Subject	Page
List of tables	I
List of figures	IV
List of abbreviations	VI
Introduction	1
Aim of the work	3
Review of literature	4
Antimicrobial resistance	4
β Lactam antibiotics	10
Mechanism of resistance to β Lactam antibiotics	20
Regulation of β Lactam antibiotics resistance	25
Extended spectrum beta lactamases	31
ESBL producing Gram-negative bacilli	40
Laboratory methods for the detection of ESBL producing enterobacteriaceae	
Epidemiology of ESBL	49
Treatment of infection with ESBL producing organisms	52
Tigecycline	67
In vitro acvtivity of tigecycline	70
Patients and Methods	86
Results	104
Discussion	131
Summary	137
Conclusion	
References	
Arabic summary	

LIST OF ABBREVIATIONS

Abbreviations	Meaning
A. baumannii.	Acinetobacter baumannii.
Aptt	Activated partial thromboplastin time.
ARG	Arginine amino acid.
ASP	Aspartic acid.
ASUHs	Ain Shams University Hospitals.
B.cepacia	Burkholderia cepacia.
BD	Becton–Dickinson.
B.fragilis	Bacteroides fragilis.
β-lactam	βeta-lactam.
CA	Clavulanic acid.
CAC disc	Ceftazidime / Clavulanic acid disc.
CAP	Community-acquired pneumonia
CAZ disc	Ceftazidime disc.
CFU	Colony-forming units .
CSLI	Committee for Clinical and Laboratory Standards Istitute.

CSU	Catheter stream urine.
CTC disc	Cefotaxime / Clavulanic acid disc.
CTX disc	Cefotaxime disc .
CYP450	Cytochrome p450.
DA	Dalton.
DNA	Deoxyribonucleic acid.
EARSS	European Antimicrobial Resistance Surveillance System .
ECDC	European Centre for Disease Prevention and Control
E. cloacae	Enterobacter cloacae.
E. Coli	Escherichia coli.
E. corrodens	Eikenella corrodens.
E. faecalis	Enterococcus faecalis.
E.faecium	Enterococcus faecium.
E/NF	Enteric/Nonfermenter .
ESBL	Extended spectrum beta lactamases .
ETA	Endotracheal aspirate.
FDA	Food and Drug Adminstration.
GLU	Glutamic acid.
GLY	Glycine amino acid.

GNEB	Gram-negative enteric bacteria
H. flu	Hemophilus influenzae.
НММ	High molecular mass
ICT	Infection Control Team.
ICU	Intensive care unit .
ID	Identification .
IF	Inoculum Fluid.
INR	International Normalization Ratio.
IRTs	The Inhibitor-Resistant TEM β Lactamases.
K. ascorbata	Kluyvera ascorbata.
K. pneumoniae	Klebsiella pneumoniae.
K. oxytoca	Klebsiella oxytoca.
LMM	Low molecular mass .
LRTI	Lower respiratory tract infection.
LTCFs	Long-term care facilities .
LYS	Lysine amino acid.
M. avium	Mycobacteria avium.
M. catarrhalis	Moraxilla catarrhalis.
MDROs	Multi drug resistant organisms .

MIC	Minimum inhibition concentration.
μg	Microgram.
Mg	Milligram.
МНА	Muller Hinton Agar medium .
mL	Milliliter.
Mm	Millimeter.
MRSA	Methicillin resistant Staphylococcus aureus.
MR	Multi-resistance.
MSSA	Methicillin sensitive staph. aureus .
MSU	Mid-stream urine .
NCCLS	National Committee for Clinical Laboratory Standards.
N.gonorrhoeae	Niesseria gonorrhoeae.
ОМ	Outer membrane.
P. aeruginosa	Pseudomonas aeruginosa.
P. anaerobius	Peptostreptococci anaerobius.
PBPS	Penicillin binding proteins.
PDB	Protein Data Bank .
P. mirabilis	Proteus mirabilis.
PRO	Proline amino acid.

PRSP	Penicillin-resistant Streptococcus pneumonia .
PT	Prothrombin time .
P.valgaris	Proteus valgaris.
QC	Quality control .
RNA	Ribonucleic acid.
S. agalactiae	Streptococcus agalactiae.
SER	Serine amino acid.
S. maltophilia	Stenotrophomonas maltophilia.
S. marcescens	Serratia marcescens.
SMI	Swedish Institute for Infectious Disease Control .
S. pneumoniae	Streptoccocus pneumoniae.
SPP	Species.
S. pyogenes	Streptococcus pyogenes.
TGC disc	Tigecycline disc .
UK	United Kingdom.
USA	United States of America.
UTI	Urinary tract infection .
VRE	vancomycin resistant enterococci.

VS	Versus.
WHO	World Health Organization.

LIST OF FIGURES

Figure	Title	Page No.
Figure 1	Number of vancomycin resistant enterococci (VRE),	5
Figure 2	Illustration of how some antimicrobial agents are rendered ineffective	9
Figure 3	Core structure of penicillins	12
Figure 4	Skeletal formula of cefalexin, a first-generation cephalosporin	15
Figure 5	Skeletal formula of imipenem	18
Figure 6	Schematic of the tripartite multidrug efflux pump.	24
Figure 7	Confirmed ESBL-producing K. pneumoniae.	47
Figure 8	MIC ratio of Ceftazidime vs. Ceftazidime/clavulanate acid >8 indicates ESBLs	48
Figure 9	Structure of tigecycline	68
Figure 10	The <i>BBL Crystal</i> TM Enteric/Nonfermenter (E/NF) Identification (ID) System.	90
Figure 11	Example for an identification result.	92
Figure 12	The steps of identification procedure.	94
Figure 13	A positive result from Oxoid ESBL MIC indicated ESBL production.	97
Figure 14	A negative result from Oxoid ESBL Detection Disks indicated no ESBL production.	99

Figure 15	A positive result from Oxoid ESBL Detection Disks indicated ESBL production.	100
Figure 16	Tigecycline disc diffusion and E test.	103
Figure 17	Frequencies of different isolated organisms causing LRTIs.	105
Figure 18	Frequencies of different isolated organisms causing UTIs.	107
Figure 19	Frequencies of different isolated organisms from pus.	108

LIST OF TABLES

Table	Title	Page No.
Table 1	Biochemical mechanisms of bacterial resistance	9
Table 2	Functional classification of βeta-lactamases	27
Table 3	MIC and Inhibition Zone Criteria for the	45
Table 4	Initial screen test suspecting ESBL production.	96
Table 5	MIC values by Hicomb MIC strips.	97
Table 6	Phenotypic confirmatory test for ESBL production	99
Table 7	Tigecycline susceptibility values.	101
Table 8	Tigecycline MIC values.	102
Table 9	Frequencies of different isolated organisms causing LRTIs	105
Table 10	Frequencies of different isolated organisms causing UTIs	106
Table 11	Frequencies of different isolated organisms from pus.	108
Table 12	Frequencies of different gram negative bacilli in different samples.	109
Table 13	Frequency of ESBL positive organisms in urine samples by screening methods.	110
Table 14	Frequency of ESBL positive organisms in	111

	respiratory samples by screening methods.	
Table 15	Frequency of ESBL positive organisms in pus samples by screening methods.	112
Table 16	Frequency of ESBL positive organisms in all samples by screening methods.	113
Table 17	Frequency of ESBL positive organisms in urine samples by confirmatory methods.	114
Table 18	Frequency of ESBL positive organisms in respiratory samples by confirmatory methods.	115
Table 19	Frequency of ESBL positive organisms in pus samples by confirmatory methods.	116
Table 20	Frequency of ESBL positive organisms in all samples by confirmatory methods.	117
Table 21	The conclusive frequency of ESBL positive organisms in	118
Table 22	No and incidence of TGC susceptibility among	119
Table 23	No and incidence of TGC susceptibility among ESBL positive species by E test.	120
Table 24	Results of ESBL detection among the Entero in urine samples.	121

Table 25	Collective results of ESBL among the Entero in respiratory samples.	123
Table 26	Collective results of ESBL among the Entero in pus samples.	125
Table 27	Collective results of ESBL among the Entero by confirmatory	126
Table 28	Collective results of ESBL among the Entero by confirmatory	127
Table 29	Collective results of ESBL among the Entero by confirmatory	128
Table 30	Collective results of tigecycline susceptibility among ESBL positive species	129
Table 31	Reported ESBL positivity rates from Asia.	133

INTRODUCTION

In the present era of multi-drug resistant organisms (MDRO), clinicians are facing an acute shortage of antibiotics with activity against the MDROs. Pathogens like methicillin resistant *Staphylococcus aureus* (MRSA), vancomycin resistant *enterococci* (VRE) and extended spectrum β lactamase (ESBL) producing Gramnegative bacilli harbour genetic determinants, which render them resistant to most of the available antimicrobials (*Hernández et al.*, 2005).

With the emergence and spread of carbapenem resistant and metallo- β lactamase (MBL) producing *Pseudomonas aeruginosa* and *Acinetobacter spp.*, the only viable treatment option remains the potentially toxic colistin/polymyxin B group of antibiotics. Infections by these MDRO lead to prolonged hospitalization, increased mortality, morbidity and cost of treatment (*Lee et al.*, 2008).

Most ESBLs are found in *E.coli* or *Klebsiella sp.*, but may be found in other genera of the *Enterobacteriaceae*, plus some of the non-fermenters (e.g. *Pseudomonas aeruginosa*, *Acinetobacter spp*) (*Mathur et al.*, 2002; *Bijayini et al.*, 2009).

ESBLs are plasmid-borne enzymes produced by Gram negative rods that confer resistance to all the penicillins, cephalosporins (with the exception of cephamycins) and monobactams. The plasmids encoding these enzymes can also carry genes for resistance to other antibiotics such as cotrimoxazole, aminoglycosides and tetracyclines . (*Bradford*, 2007).