

A study of the etiology, risk factors, clinical features and pitfalls in management of newly diagnosed diabetic children and adolescents

Thesis

Submitted for partial fulfillment of M.Sc. degree in Pediatrics

By
Abeer Mohamed El-sayed Osman
M.B. B.Ch

Under supervision of

Prof. Dr. Mona Hassan Hafez

Prof. of Pediatrics

Cairo University

Prof. Dr. Mona Mamdouh Hassan Prof. of Pediatrics

Cairo University

Prof. Dr. Mostafa Mohi Ahmady Barakat Prof. of Pediatrics

National Research Center

Faculty of medicine
Cairo University
2011

Acknowledgement

First of all thanks to ALLAH, the source of all knowledge, who gave me the power by his abundant grace to produce this piece of work.

I wish to express my appreciation and sincere gratitude to **Prof. Dr. Mona Hassan Hafez**, Professor of Pediatrics, Faculty of Medicine, Cairo University, for her kind help, advice, effort and encouragement.

I am deeply thankful & grateful to **Prof. Dr. Mona Mamdouh Hassan**, Professor of Pediatrics, Faculty of Medicine, Cairo University for her valuable supervision, kind advice, constant guidance and support.

Many thanks and appreciation to **Prof. Dr. Mostafa Mohi Ahmady Barakat**, Professor of Pediatrics, National Research Center, for his valuable help and guidance in this research work.

Deep thanks are also directed to **Prof. Dr. Nagwa Abd Alghafar Mohamed**, professor of clinical pathology, National Research Centre, for her supervision, kind advice and support.

Also I'd like to deeply thank **Dr. Hala Mahmoud Koura**, researcher of pediatrics, National Research Centre not only for her kind assistance, support, but also for her patience with constant guidance and effort.

I always feel grateful to my professors and colleagues in the pediatric department, National Research Centre, for their help and cooperation.

Also I wish to thank my parents, my family, and my friends for their continuous support in life and in work.

Last but not least I'd like to express many thanks to the patients who were involved in the study, and their parents.

Abstract

Introduction: Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia and accompanied by long term damage, dysfunction and failure of various organs.

Aim of the study: to identify the etiology, risk factors and the most common clinical features of newly diagnosed diabetes in children and adolescents. And identification of the factors related to delayed diagnosis or mismanagement in these children.

Methods: Ninety nine children (52 males and 47 females), aged from few days to 13 years, diagnosed with newly diagnosed diabetes, referred and managed at DEMPU in Children's Hospital, Cairo University.

Results: Classic symptoms (polyuria, polydipsia and weight loss) were the most common symptoms (95.9% &90.7%) preceding the diagnosis; and diabetic ketoacidosis was present in 51.5%. Delayed and missed diagnosis was recorded in 49.5 %, with no significant relation to age, district of accommodation or family history of diabetes. Cow's milk feeding was more frequent, being recorded in 79.3% vs. 20.7% with exclusive breast feeding, and positive family history of diabetes was recorded in 77.3%. Severity at presentation showed no significant relation to age, type of feeding, family history of diabetes or C-peptide level.

Conclusion: the classic triad of diabetes is the commonest presenting symptom of diabetes in children. Misdiagnosis and mismanagement are common and accounts for more severe presentation among newly diagnosed diabetic children, with infants below 2 years of age being the most vulnerable group to such problem. Positive family history of diabetes is high and positive FH of type 2 diabetes mellitus is more frequent than type 1 or both. Early introduction of cow's milk appears to be a risk factor for the development of type 1 diabetes mellitus (T1DM).

Keywords: Diabetes, Children, clinical picture, misdiagnosis.

CONTENTS

List of Abbreviations	I
List of Tables	IV
List of Figures	VII
Abstract	2
Introduction and Aim of the Work	4
Review of Literature	8
Definition and classification	8
Diagnosis	25
Pathogenesis	30
Pathophysiology	45
Epidemiology	49
Clinical presentation & complications	52
Laboratory study	59
Management	62
Screening, prevention & prognosis	72
Patients and Methods	79
Results	90
Discussion	119
Summary & Conclusion	
Recommendations	
References	
Arabic Summary	

List of Abbreviations

AAP American Academy Of Pediatrics

ADA American Diabetes Association

AN Acanthosis Nigricans

BCG Bacillus Calmette-Guerin

BMI Body Mass Index

CDC Centers For Disease Control And Prevention

CSII Continuous Subcutaneous Insulin Infusion

CVB 1-6 Group B Coxsakie Viruses

DAISY Diabetes Autoimmunity Study In The Young

DEMPU Diabetic, Endocrine And Metabolic Pediatric Unit

DCCT Diabetes Control And Complications Trial

DKA Diabetic Ketoacidosis

DM Diabetes Mellitus

DPP-IV Dipeptidyl Peptidase-IV

DPT Diabetes Prevention Trial

FDA US Food And Drug Administration

FPG Fasting Plasma Glucose

GAD₆₅ Glutamic Acid Decarboxylase

GADAs Glutamic Acid Decarboxylase Antibodies

GDM Gestational Diabetes Mellitus

GLP-1 Glucagon-Like Peptide 1

HbA₁C Glycosylated Hemoglobin

HEV-B Human Enterovirus B

HLA Human Leukocyte Antigen

HNF Hepatocyte Nuclear Factor

IAAs Anti-Insulin Autoantibodies

IA2/ICA512 Anti-Tyrosine-Phosphatase Antibodies

ICAs Islet Cell Antibodies

IDDM Insulin Dependant Diabetes Mellitus

IFG Impaired Fasting Glucose

IGT Impaired Glucose Tolerance

IPF Insulin Promoter Factor

IPEX syndrome Immunodysregulation Polyendocrinopathy Enteropathy X-

Linked Syndrome

IR Insulin Resistance

IRR 84/510 International Reference Reagent

ISPAD International Society For Pediatric And Adolescent Diabetes

IZS Insulin Zinc Suspension

LADA Latent Autoimmune Diabetes Of The Adult

LADC Latent Autoimmune Diabetes In Children

LDL-C Low Density Lipoprotein - C

MHC Major Complex Of Histocompatibility

MODY Maturity Onset Diabetes Of The Young

MRDM Malnutrition-Related Diabetes Mellitus

NDM Neonatal Diabetes Mellitus

NPH Neutral Protamine Hagedorn Insulin

NIDDM Non-Insulin Dependant Diabetes Mellitus

NRC National Research Centre

OGTT Oral Glucose Tolerance Test

OR Odds Ratio

PCOS Polycystic Ovarian Syndrome

PNDM Permanent Neonatal Diabetes Mellitus

PTPN 22: Protein Tyrosine Phosphatase, Nonreceptor-Type

SAS Statistical Analysis Systems

SES Socioeconomic Status

SDS Standard Deviation Score

SGA Small For Gestational Age

SPIDDM Slowly Progressing Insulin Dependent Diabetes

T1BDM Type 1 B Diabetes Mellitus
TCF7L2 Transcription Factor 7-Like 2

T1DM Type 1 Diabetes Mellitus

T2DM Type 2 Diabetes Mellitus

Th₁, **Th**₂ T Helper 1, 2

List of Tables

TABLE (1)	Etiological classification of disorders of glycemia	10
TABLE (2)	Clinical characteristics of type 1 diabetes, type 2 diabetes and Monogenic diabetes in children and adolescents	18
TABLE (3)	A summary of some of the key clinical features for insulin resistance syndromes	19
TABLE (4)	Criteria for the diagnosis of diabetes mellitus	25
TABLE (5)	1999 WHO Diabetes criteria	26
TABLE (6)	Non-genetic (environmental) risk factors in childhood onset Type 1 diabetes	32
TABLE (7)	Similar risk factors for contributing in both vitamin D deficiency and type 1 diabetes	35
TABLE (8)	Human Viruses Associated with the Induction of T1D	38
TABLE (9)	Viruses associated with human diabetes.	38
TABLE (10)	Physiolocigal effects of high versus low insulin states	46
TABLE (11)	Types of insulin preperations and suggested action profiles according to manufacturer	65
TABLE (12)	Demographic data of the studied group	90
TABLE (13)	Analysis of data for cases with prolonged duration of symptoms	91
TABLE (14)	Age groups in relation to district in the studied group	92
TABLE (15)	Severity of presentation at onset of diabetes mellitus in studied group	93

TABLE (16)	District versus severity of presentation of the studied group	94
TABLE (17)	Common symptoms preceding presentation of the studied group	95
TABLE (18)	Frequency of diabetic ketoacidosis in children presenting with abdominal pain, vomiting & dehydration in the studied group	96
TABLE (19)	Presenting symptoms in different age groups in the studied group	98
TABLE (20)	Comparison between the 3 age groups in relation to family history	99
TABLE (21)	Duration of symptoms in relation to district, age groups, and severity of presentation & family history in the studied group	100
TABLE (22)	Common associations with diabetes mellitus in studied group	101
TABLE (23)	Possible Risk factors responsible for occurrence of diabetes in the studied group	104
TABLE (24)	Comparison between the feeding groups with respect to age in the studied group	105
TABLE (25)	Comparison between breast feeding and early cow milk introduction in relation to severity of symptoms in the studied group	106
TABLE (26)	Frequency of misdiagnosis & mismanagement among the studied group	107
TABLE (27)	Frequency of misdiagnosis in relation to district, age groups & family history of DM & severity of presentation in the studied group	109
TABLE (28)	Family history for diabetes and autoimmune disease for studied group	111

TABLE (29)	Relation between family history of diabetes mellitus and severity of presentation in the studied group	112
TABLE (30)	Anthropometric data of the studied group	112
TABLE (31)	Demographic and laboratory data of patients with high BMI	113
TABLE (32)	Comparison between c-peptide in relation to age, duration of symptoms and z-score for BMI	114
TABLE (33)	Comparison between c-peptide groups <1 & >1 in the studied group	115
TABLE (34)	Comparison between patients with high c peptide level	116
TABLE (35)	C-peptide and TSH levels comparison between controls and cases	117

List of Figures

FIGURE (1)	Disorders of glycemia: aetiological types and clinical stages	9
FIGURE (2)	Proposed scheme of natural history of β -cell defect	44
FIGURE (3)	Mechanism of insulin release in normal pancreatic beta cells.	45
FIGURE (4)	Hyperbolic relationship between insulin sensitivity and insulin secretion	48
FIGURE (5)	Treatment decision tree for type 2 diabetes in children and adolescents	69
FIGURE (6)	Nephropathy and the 'vicious cycle' of progressive hypertension, dyslipidaemia, renal damage and cardiovascular.	76
FIGURE (7)	Severity of presentation at onset of diabetes mellitus in studied group	93
FIGURE (8)	District versus severity of presentation of the studied group	94
FIGURE (9)	Common symptoms preceding presentation in the studied group	95
FIGURE (10)	Severity of presentation in different age groups	97
FIGURE (11)	Duration of symptoms in relation to district in the studied group	100
FIGURE (12)	Duration of symptoms in relation to severity of presentations in the studied group	101
FIGURE (13)	common associations with diabetes mellitus in the studied group	102
FIGURE (14)	History of breast feeding and early cow's milk consumption	103

FIGURE (15)	Relation between type of feeding and age of presentation in the studied group	105
FIGURE (16)	Frequency of misdiagnosis & mismanagement among the studied group	107
FIGURE (17)	Incidence of misdiagnosis in relation to age group	110
FIGURE (18)	Frequency of misdiagnosis in relation to severity of presentation	110

Introduction

Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both. The chronic hyperglycemia of diabetes is associated with long term damage, dysfunction, and failure of various organs especially the eyes, kidneys, nerves, heart and blood vessels (*Craig et al.*, 2009).

The vast majority of cases of diabetes fall into 2 broad etiopathogenetic categories: type 1 DM (T1DM) caused by absolute deficiency of insulin, and type 2 DM (T2DM) which is characterized by the presence of insulin resistance with inadequate compensatory increase in insulin secretion. Other uncommon types of diabetes include those caused by infections, drugs, endocrinopathies, pancreatic destruction and genetic defects (*ADA*, *2010*).

T1DM is the most commonly diagnosed type in children and adolescents and usually presents with symptomatic hyperglycemia and imparts the immediate need for exogenous insulin replacement (*Haller*, 2005)

T2DM is the most common in adults and its prevalence in children is increasing. Pediatric patients with T2DM are likely to be obese or overweight and present with glycosuria without ketonuria, absent or mild polyuria and polydipsia and little or no weight loss (*Reinehr*, 2005).

The presentation of T1DM is either as classic new onset (most common), silent diabetes or diabetic ketoacidosis – DKA (20-40%) (*Haller*, 2005)

Classic new onset T1DM patients present with polyuria, polydipsia, polyphagia, weight loss and lethargy; while those with silent T1DM are typically diagnosed by families or physicians with high index of suspicion. Children who present with DKA present with dehydration, vomiting, altered mental status and rapid deep respiration (Kussmaul's breathing) (*Craig et al.*, 2009).

Because DKA is a potentially preventable acute complication of diabetes mellitus and a predominant cause of mortality in these children, early recognition and prompt treatment should substantially reduce childhood mortality in children with type 1 DM (*Scibilia et al.*, 1986)

Increased public awareness of early symptoms of diabetes is needed to reduce the frequency and severity of ketoacidosis. In addition, greater medical alertness to the possibility of T1DM in a young child should be stressed (Mallare et al., 2003)