CURRENT CONCEPTS IN FEMORAL STEM LENGTH IN TOTAL HIP REPLACEMENT

Essay
Submitted for Partial Fulfillment of Master Degree
in Orthopedic Surgery

Presented by **Essam Mohamed El Hefnawy**M.B.B.Ch

Ain Shams University

Under Supervision of

Dr. Ayman Hussein Gouda

Assistant Professor of Orthopedic Surgery
Faculty of Medicine - Ain Shams University

Dr. Amr Ahmed Abd El Rahman

Lecturer of Orthopedic Surgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2011

المفهوم الحالى للفص الوركى فى جراحة الأستبدال الكلى لمفصل الفخذ

رسالة توطئة للحصول على درجة الماجستير في جراحة العظام مقدمة من

عصام محمد الحفناوي بكالوريوس الطب والجراحة جامعة عين شمس

تحت إشراف

الدكتور/ أيمن حسين جودة أستاذ مساعد جراحة العظام كلية طب جامعة عين شمس

الدكتور/ عمرو أحمد عبد الرحمن مدرس جراحة العظام كلية طب جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

Summary and Conclusion

SUMMARY

Total hip Replacement is one of most dramatically successful procedure performed in medicine. Relief of pain & restoration of function are predictably achieved in a very high percentage of cases.

The development of total hip arthroplasty in the sixties by Sir John Charnley represents a milestone in orthopaedic surgery.

Total hip replacement is indicated in degenerative arthritis, rheumatoid arthritis, ankylosing spondylitis, primary and secondary avascular necrosis, ankylosis secondary to previous infections, spontaneous ankylosis, post surgical ankylosis, benign and malignant bone tumors around the hip joint, and hip fracture.

Total hip femoral and acetabular components of various materials and a multitude of designs are currently available. No implant design or system is appropriate for every patient, and therefore a general knowledge of the variety of component designs, as well as their strengths and weaknesses, is an asset to the surgeon.

Selection is based on the patient's needs, anticipated longevity and level of activity, bone quality and

List of Contents

Title	Page
Introduction	
Chapter (1): Anatomy of Hip Joint	3
Chapter (2): Biomechanics of Hip Joint	14
Chapter (3): Historical View	32
Chapter (4): Stem Designs	40
Chapter (5): Short Stem In Total Hip Replacement	
Aim of the work	100
Summary and Conclusion	101
References	105
Arabic summary	

List of Abbreviations

PTFE : Polytetrafluoroethylene

UHMWPE: Ultra High Molecular Weight Polyethylene

BHR : Birmingham Hip resurfacing

THR : Total Hip replacement

CO/Cr : Cobalt Chrome

CAD : Computer Aided design

CAM : Computer aided manufactured

TM : Trade mark

FDA : Food and drug administration

CCD : Caput Collum Diaphysis

BW : Body weight

Ti : Titanium

Al : Alloy

List of Figures

Fig.	Title	Page No.
1	Proximal end of left femur.	4
2	Anatomy of the bony trabeculae in the proximal end of the femur.	6
3	Coronal section of the hip.	8
4	The vascular supply to the femoral head.	10
5	The left gluteus maximus, posterior view.	11
6	Forces of the hip in single leg stance.	14
7	A-P x-ray of a normal hip.	15
8	Diagram of lines of stress (right), based upon the mathematical analysis of the right femur.	16
9	Biomechanics of body weight	18
10	The abductor mechanism changes with head-neck angle or neck length.	19
11	Forces on the hip with sideways limping.	21
12	Long, stiff femoral stems that impinge at the femoral bow.	22
13	Extensively porous-coated stem.	23
14	Modular system for femoral components.	26
15	Wear of Total hip replacement	29
16	Severe polyethylene wears with severe periacetabular osteolysis and fracture of medial wall of acetabulum.	30
17	McKee-Ferrar Total Hip	32
18	Sir John Charnley	35
19	Charnley- Low Friction arthroplasty Component.	35
20	A generic proximally coated femoral component.	36
21	A total hip with a ceramic on ceramic articulation.	38
22	Features of femoral component.	41
23	Arcs of motion with small and large heads and cups.	43

Fig.	Title	Page No.
24	Charnley resurfacing components and cup.	45
25	Spectran EF stem.	46
26	Muller femoral component.	48
27	Basic cementless stem shapes.	50
28	The Zweymuller prosthesis.	52
29&30	Biomechanics in prosthesis with the lateral flare.	56
31	Contact stress.	59
32	Philosophies of conserving the neck.	60
33&34	Corin Cormet 2000 Version-I.	63
35	Hip resurfacing complications	66
36&37	Demonstrate the silent hip shape and in X.ray.	69
38&39	The Mayo conservative femoral prosthesis in model and X.ray.	70
40	Reference for leg length measurement.	72
41	Preoperative planning with digital templating.	72
42&43	Metha Modular stem short prosthesis design and in X.ray.	77
44	Femoral Osteotomy.	79
45	X.ray demonstrating the sliding of the stem into varus.	80
46&47	ESKA Femoral prosthesis.	83
48	Migration of CUT prosthesis.	85
49	The DePuy Proxima™ hip.	87
50	(Stem Design).	90
51	The shorter second generation.	91
52&53	Demonstration of lower neck cut.	92
54&55	Point of entry.	92
56&57	Introducing the box chisel with 30° varus inclination	93
58	Alignment device.	94
59	Patient after 1 month of PROXIMA.	96

Before all, Thanks to Allah

I would like to express my profound gratitude to **Dr. Ayman Hussein Gouda,** Assistant Professor of Orthopedic Surgery, Ain Shams University for his most valuable advises and support all through the whole work and for dedicating much of his precious time to accomplish this work.

I am also grateful to **Dr. Amr Ahmed Abd El Rahman** Lecturer of Orthopedic Surgery, Faculty of
Medicine, Ain Shams University for his unique effort,
considerable help, assistance and knowledge she offered me
throughout the performance of this work.

Introduction

Although substantial progress has been made in the development of cementless total hip arthroplasty (THA) in recent years, a number of limitations remain. The implantation of the femoral component requires a large surface area of bone to be prepared.

To address such limitations, new THA implant designs with shorter stems have been developed. Some designs, such as the IPSTM the Mayo Conservative Hip or the Santori Custom stem have involved shortening or discarding much of the distal stem with the aim of maximizing bone and soft tissue conservation.₍₁₎

In studies of short stemmed femoral implants showed more initial migration than for conventional stem implants The short stabilized when stems. cortical contact was achieved or cancellous bone was compacted sufficiently. Lower cyclic motion of short stems indicate better physiological loading of the Not only intra-operative destruction of bone. femur comparatively small proximal is remodeling secondary bone around the ingrown implant appears closure to physiological conditions. (2)

Due to the specific shape of the stem an adapted insertion technique is required to avoid damage to the great trochanter and gluteus muscles. The broaching and final implant insertion is performed using a slight curved movement. (1)

Biomechanical in vitro tests show that adequate stability can be achieved with the selection of a small implant size and cancellous fixation of the stem when good bone quality is present. Therefore, a sufficient amount of healthy cancellous bone around the implant should already be considered in the preoperative templating. (1)

Arthrodesis of the hip remains an alternative treatment for severe unilateral arthritis after traumatic injury or infection in young persons successful Arthrodesis provides long term pain relief and allows the resumption of activities. However, over time, a fused hip may be associated with functional disability such as pain in low back region, contra-lateral hip, ipsilateral knee.₍₃₎

There therefore a need for alternative prostheses. There conservative are two major contemporary issues that are driving the development of conservative implants firstly the increasing popularity of minimally invasive surgery and secondly the desire younger patients to restore of their quality of life.(4)

Chapter (1):

Anatomy of Hip Joint

Anatomy of proximal femur:

The femur is the longest and strongest bone in the human body. Its length is necessary to accomplish the biomechanical needs of gait. Its strength is necessary to transmit the muscular and weight-bearing forces. It is mostly cylindrical throughout its length, and it is anteriorly and laterally bowed in its midportion. The extent of bowing is clinically relevant because if excessive, it may not be possible to utilize long straight implants without considerable under-sizing. The proximal metaphysis and neck are anteverted in relationship to the posterior aspect of the femoral condyles by approximately 15°.(5)

Femoral head and neck:

The femoral neck is 5 cm long, narrowest in its mid part and widest laterally, and connects the head to the shaft at an angle of 125° (angle of inclination; neck-shaft angle): this facilitates movement at the hip joint, enabling the limb to swing clear of the pelvis.

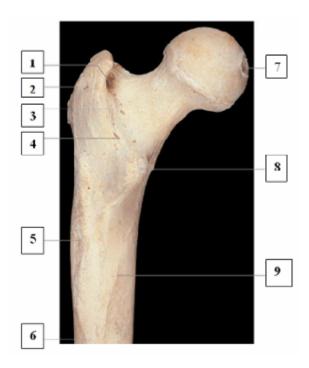


Fig. (1): Proximal end of left femur. (6)

- 1. Trochanteric fossa.
- 3. Quadrate tubercle.
- 5. Gluteal tuberosity.
- 7. Fovea for ligamentum teres.
- 9. Spiral line.

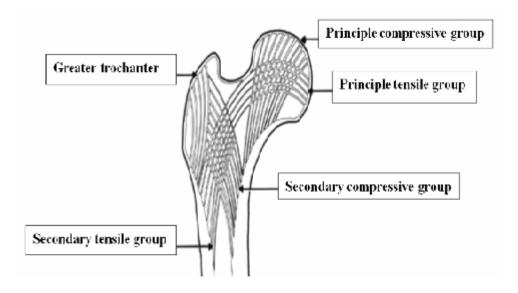
- 2. Greater trochanter.
- 4. Intertrochantric crest.
- 6. Linea aspera.
- 8. Lesser trochanter.

The neck also provides a lever for the action of the muscles acting about the hip joint, which are attached to the proximal femur. The neck is laterally rotated with respect to the shaft (angle of anteversion) some 10-15°, although values of this angle vary between individuals and between populations.

The contours of the neck are rounded: the upper surface is almost horizontal and slightly concave, the lower is straighter but oblique, directed infero-laterally and backwards to the shaft near the lesser trochanter the femoral head is not a perfect sphere, and the joint is congruous only in the weight-bearing position. (6)

The orientation is along lines of stress, and thicker lines come from the calcar and rise superiorly into the weight-bearing dome of the femoral head. Forces acting in this arcade are largely compressive. Lesser trabecular patterns extend from the inferior region of the foveal area across the head and superior portion of the femoral neck into the trochanter and lateral cortex. (6)

This system is based on the presence or absence of the five normal groups of trabecular in the proximal femur, as described by Ward 60


The trabecular of this region are divided to:

1. The main system:

• The principle tensile group: arises from the lateral aspect of the femoral shaft to run an arched course medially to reach the inferior aspect of the femoral head.₍₇₎

The principle compressive group:

A rises from the medial cortex of the shaft and the inferior aspect of the neck to ascend along the direction of the compressive forces to the cortical bone of the superior aspect of the head (**Fig. 2**) (also known as the medial system) (7)

Fig.(2): Anatomy of the bony trabeculae in the proximal end of the femur. In a nonosteoporotic femur the ward's triangle (W) is a small area in the neck of the femur that contains thin and loosely arranged trabeculae only. (8)