

ENHANCEMENT OF MODIFIED SEPTIC TANK BY USING EFFECTIVE MICROORGANISMS

A Thesis
Submitted to the Faculty of Engineering
Ain Shams University for the Fulfillment
of the Requirement of M.Sc. Degree
In Civil Engineering

Prepared by ENG. HEBA FATHI GOMAA MANSOUR

B.Sc. in Civil Engineering, June 2004 Faculty of Engineering – Ain Shams University

Supervisors Prof. Dr. MOHAMED EL HOSSEINY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. MOHAMED ALY FERGALA,

Assoc. professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. MOHAMED SOBHY ABDEL RAHMAN,

Assistant professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

ENHANCEMENT OF MODIFIED SEPTIC TANK BY USING EFFECTIVE MICROORGANISMS

A Thesis For
The M.Sc. Degree in Civil Engineering
(SANITARY ENGINEERING)

by

ENG. HEBA FATHI GOMAA MANSOUR

B.Sc. in Civil Engineering, June 2004 Ain Shams University

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Hamdy Ibrahim Aly Ahmed	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Salah-Aldeen Mohamed Bayomy	V
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Zagazig University	
Prof. Dr. Mohamed El Hosseiny El Nadi	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
,	Date:/2011

DEDICATION

I wish to dedicate this work to whom suffered to educate, prepare, build capacity and help myself to be as I am,

To
My Mother & My Father
&
My Brothers and Sisters

Also thanks

To My Husband

For his encouragement and support to complete this work.

Finally for My Dear Son to be proud me

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from September 2007 to July 2011.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

> Date: - ---/-- /2011 Signature: - ------

Name: - HEBA FATHI GOMAA MANSOUR

<u>ACKNOWLEDGMENT</u>

The candidate is deeply grateful to Prof. Dr. Mohamed EL Hosseiny EL Nadi, Professor of sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University, for help, encourage, co-operation sponsoring and patient advising during preparation of this work.

Also, great thanks to **Dr. Mohamed Aly Fergala,** Assoc. Professor of sanitary and Environmental Engineering, Ain Shams University, for her help, and co-operation during the preparation of the study.

Also, great thanks to **Dr. Mohamed Sobhy Abdel Rahman,** Assistant Professor of sanitary and Environmental Engineering, Ain Shams University, for her help, and cooperation during the preparation of the study.

Special thanks to **Prof. Dr. Tarek I. Sabry,** Assistant Professor of sanitary and Environmental Engineering, Ain Shams University, for his cooperation and assistance to obtain scientific sources, as well as the laboratory pilot.

Also, very grateful to the staff and the laboratory personnel In El Berka waste water treatment plant, Cairo Governorate, for their encouragement, help, and support during thesis preparation.

There aren't words reflect the grateful towards Prof. Dr. Ibrahim Fathy Shaker, and M.G. Belassy Shaker.

ABSTRACT

NAME: - HEBA FATHI GOMAA MANSOUR

Title: - "ENHANCEMENT OF MODIFIED SEPTIC TANK BY USING EFFECTIVE MICROORGANISMS"

Faculty: - Faculty of Engineering, Ain Shams University.

Specialty: - Civil Eng., Public Works, Sanitary Eng.

Abstract:-

The increase of waste water environmental problems in Egypt rural areas with the high cost of traditional treatment, led to try new low cost treatment techniques to get high efficiency and low cost. One of these techniques is the Upflow Septic tank/Baffled Reactor (USBR) that achieves removal efficiency from 80 to 85% for all parameters developed by a research team from Faculty of Engineering, Ain Shams University.

The study had used the effective microorganisms to improve the SBR removal efficiency. It was developed and tested at pilot scale for twenty-two months in El Berka sewage treatment plant where was studying the impact of adding EM by adding a different doses (0.5-4) g/l in order to determine the optimum dose which raise the efficiency.

The system has demonstrated satisfactory removal results even at high wastewater strength that when EM addition applied at second part of the unit, the overall removal ratios were 96%, 93.5% and 90.9% for COD_{tot} , BOD_5 and T.S.S respectively.

The optimum mixing ratio (dose) of EM which gets the maximum removal efficiency was 3 g/l this dose enhanced the system stability under variable inlet load and accelerated the reaching to the steady state.

The study recommended that system is suitable to be applied for the small communities with small sewage flow and the private separate housings to get optimal benefits from this system.

SUPERVISORS

Prof. Dr. Mohamed EL Hosseiny EL Nadi, Dr. Mohamed Aly Fergala,

Dr. Mohamed Sobhy Abdel Rahman,

TABLE OF CONTENTS

		Page
	COVER	i
	DEDICATION	iii
	STATEMENT	iv
	ACKNOWLEDGEMENT	V
	ABSTRACT	vi
	TABLE OF CONTENTS	vii
	LIST OF FIGURES	xii
	LIST OF TABLES	xvii
	CHAPTER I: INTRODUCTION	
1.1	BACKGROUND	1
1.2	STUDY OBJECTIVE	2
1.3	THE SCOPE OF WORK	3
1.3.1	PHASE I	3
1.3.2	PHASE II	3
1.3.3	PHASE II	3
1.3.3.1	ANALYSIS AND DISCUSSION	3
1.3.3.2		4
1.4	THESIS ORGANIZATION	4
1.4.1	CHAPTER ONE (INTRODUCTION)	4
1.4.2	CHAPTER TWO (LITERATURE REVIEW)	4
1.4.3	CHAPTER THREE (MATERIALS AND METHODS)	4
1.4.4	CHAPTER FOUR (RESULTS)	4
1.4.5	CHAPTER FIVE (DISCUSSIONS)	5
1.4.6	CHAPTER SIX (CONCLUSIONS)	5
	CHAPTER II: LITERATURE REVIEW	
2.1	INTRODUCTION	6
2.2	THE ADVANTAGES AND DISADVANTAGES OF	
	ANAEROBIC PROCESSES COMPARED TO	
	AEROBIC PROCESSES	7
2.3	THE ANAEROBIC TREATMENT TECHNOLOGY	9
2.4	PROCESS DESCRIPTION	11
2.5	OPERATIONAL PARAMETERS	11
2.5.1	TEMPERATURE	11
2.5.2	SOLID RETENTION TIMES	12
2.5.3	SUBSTRATE LOADING	12
2.6	BIOCHEMISTRY AND MICROBIOLOGY OF	
	ANAEROBIC PROCESS	12
27	TVPES OF ANAFRORIC TREATMENT SYSTEMS	15

2.7.1	ANAEROBIC HIGH RATE REACTORS	
	TECHNOLOGY	15
2.7.1.1	THE ANAEROBIC FILTER (AF)	16
2.7.1.2	HYBRID UP FLOW REACTOR	16
2.7.1.3	THE FLUIDIZED BED (FB) REACTOR	17
2.7.1.4	UP FLOW ANAEROBIC SLUDGE BLANKET (UASB)	
	REACTOR	17
2.7.1.5	UASB-SEPTIC TANK	18
2.7.1.6	THE EXPANDED GRANULAR SLUDGE BED (EGSB)	
	REACTOR	18
2.7.2	ANAEROBIC LOW RATE REACTORS	
	TECHNOLOGY	21
2.7.2.1	ANAEROBIC FILTER (AF)	21
2.7.2.2	SEPTIC TANK	21
2.7.2.3	MODIFICATION OF SEPTIC TANK	23
2.7.2.3.a	APPLICATION OF MODIFIED SEPTIC TANK IN	
	WORLD	23
2.7.2.3.b	APPLICATION OF MODIFIED SEPTIC TANK IN	
	WORLD	23
2.7.2.3.c	THEORY OF REMOVAL FOR MODIFIED SEPTIC	
	TANK	25
2.7.2.3.d	ADVANTAGE OF MODIFIED SEPTIC TANK	26
	DESIGN CRITERIA OF MODIFIED SEPTIC TANK	27
2.7.2.3.f	INTERMITTENT SAND FILTER	28
2.8	BIOREMEDIATION	29
2.8.1	(EM) TECHNOLOGY BIOREMEDIATION	29
2.8.2	DEFINITION OF EFFECTIVE MICROORGANISMS	30
2.8.3	(EM) DISCOVERY	31
2.8.4	(EM) APPLICATIONS	32
2.8.5	FUNCTIONS OF (EM)	32
2.8.6	COMPONENTS OF (EM)	33
2.8.6.1	LACTIC ACID BACTERIA	33
2.8.6.2	YEASTS	34
2.8.6.3	PHOTOTROPHIC BACTERIA	34
2.8.7	PRODUCTS OF (EM)	34
2.8.8	FUNCTIONS OF BENEFICIAL (EM) IN SEPTIC	
	TANK	35
2.8.9	ACTIVATION AND APPLICATION OF (EM)	35
2.8.9.1	EM-1 MICROBIAL INOCULANTS	36
2.8.9.2	EM-1 WASTE TREATMENT	36
2.8.9.3	EM-1 SEPTIC TREATMENT	36
2.8.10	ANAERORIC TREATMENT AND EM	

	APPLICATIONS	37
2.8.11	SEPTIC TANK AND EM APPLICATIONS	37
	CHAPTER III: MATERIALS & METHODS	
3.1	INTRODUCTION	39
3.2	RESEARCH PROJECT LOCATION	39
3.3	LOCATION AND OPERATION CONDITIONS	40
3.4	LABORATORY SCALE UNIT	40
3.5	UNIT DESCRIPTION	41
3.5.1	SCREEN	41
3.5.2	FEEDING TANK	41
3.5.3	ELECTRIC MIXER	41
3.5.4	DIGITAL DOSING PUMP	42
3.5.5	FLEXIBLE HOSE	42
3.5.6	BAFFLES	42
3.5.7	SLUDGE BED (BIOMASS)	42
3.5.8	UP FLOW SEPTIC TANK COMPARTMENT (FIRST	
	COMPARTMENT)	42
3.5.9	PLATE SETTLER	42
3.5.10	ANAEROBIC BAFFLE REACTOR COMPARTMENT	
	(SECOND COMPARTMENT)	43
3.5.11	DIGITAL DOSING PUMP	43
3.5.12	EM TANK	43
3.6	SAMPLING LOCATIONS	44
3.7	SAMPLING PROCEDURE	44
3.8	ANALYSIS	45
3.8.1	MONITORED PARAMETERS	45
3.8.1.1		45
3.8.1.2		45
3.8.2	LABORATORY ANALYSIS MEASURING	45
3.8.2.1		45
3.8.2.2		45
3.8.2.3		
	(TSS) & (VSS)	46
3.8.2.4		47
3.8.2.5	BIOCHEMICAL OXYGEN DEMAND	47
3.9	STUDY PROGRAM	48
3.9.1	EXPERIMENTAL WORK PLAN	48
3.9.2	EXPERIMENTAL PROGRAM	48
3.9.2.1	PHASE 0- START UP	49
3.9.2.2	PHASE 1 - DOSES IN THE FIRST PART	49
3.9.2.3	PHASE 2 - DOSES IN THE SECOND PART	49

3.9.2.4	PHASE 3- SHOCK LOAD	49
3.7.2.4	THASE 3- SHOCK LOAD	7)
	CHAPTER IV: RESULTS	
4.1	INTRODUCTION	51
4.2	START UP	51
4.3	EFFECT OF EM ADDITION	55
4.3.1	EM ADDITION IN THE UNIT FIRST PART	55
4.3.1.1	RUN 1 (EM 0.5 % OF PILOT'S VOLUME)	55
4.3.1.2	RUN 2 (EM 1 ‰ OF PILOT'S VOLUME)	59
4.3.1.3	RUN 3 (EM 1.5 ‰ OF PILOT'S VOLUME)	63
4.3.1.4	RUN 4 (EM 2 ‰ OF PILOT'S VOLUME)	67
4.3.2	EM ADDITION IN THE UNIT SECOND PART	71
4.3.2.1	RUN 5 (EM 0.5 ‰ OF PILOT'S VOLUME)	71
4.3.2.2	RUN 6 (EM 1 ‰ OF PILOT'S VOLUME)	75
4.3.2.3	RUN 7 (EM 1.5 ‰ OF PILOT'S VOLUME)	79
4.3.2.4	RUN 8 (EM 2 ‰ OF PILOT'S VOLUME)	83
4.3.2.5	RUN 9 (EM 2.5 ‰ OF PILOT'S VOLUME)	87
4.3.2.6	RUN 10 (EM 3 % OF PILOT'S VOLUME)	91
4.3.2.7	RUN 11 (EM 3.5 ‰ OF PILOT'S VOLUME)	95
4.3.2.8	RUN 12 (EM 4 ‰ OF PILOT'S VOLUME)	99
4.3.3	INCREASE THE HYDRAULIC LOAD	102
4.3.3.1	RUN 13 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 18HR TO 12HR)	102
4.3.3.2	RUN 14 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 12HR TO 10HR)	106
4.3.3.3	RUN 15 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 10HR TO 8HR)	110
4.3.3.4	RUN 16 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 8HR TO 6HR)	114
4.3.3.5	RUN 17 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 6HR TO 4HR)	117
	CHAPTER V: DISSCUSION	
5.1	INTRODUCTION	121
5.2	STARTUP STAGE	122
5.3	EM ADDITION IN PART (I) OF THE UNIT	123
5.3.1	RUN 1 (EM 0.5 ‰ OF PILOT'S VOLUME)	124
5.3.2	RUN 2 (EM 1 ‰ OF PILOT'S VOLUME)	125
5.3.3	RUN 3 (EM 1.5 ‰ OF PILOT'S VOLUME)	127
5.3.4	RUN 4 (EM 2 ‰ OF PILOT'S VOLUME)	129
5.3.5	SUMMARY OF EM ADDITION IN PART (I) OF THE	
	UNIT	130
5 1	EM ADDITION IN DADT (II) OF THE UNIT	121

5.4.1	RUN 5 (EM 0.5 % OF PILOT'S VOLUME)	132
5.4.2	RUN 6 (EM 1 ‰ OF PILOT'S VOLUME)	133
5.4.3	RUN 7 (EM 1.5 ‰ OF PILOT'S VOLUME)	135
5.4.4	RUN 8 (EM 2 ‰ OF PILOT'S VOLUME)	136
5.4.5	RUN 9 (EM 2.5 ‰ OF PILOT'S VOLUME)	137
5.4.6	RUN 10 (EM 3 % OF PILOT'S VOLUME)	139
5.4.7	RUN 11 (EM 3.5 % OF PILOT'S VOLUME)	140
5.4.8	RUN 12 (EM 4 ‰ OF PILOT'S VOLUME)	141
5.4.9	SUMMARY OF EM ADDITION IN PART (II) OF	
	THE UNIT	143
5.5	EVALUATION OF THE RESULTS	144
5.6	INCREASE THE HYDRAULIC LOAD	149
5.6.1	RUN 13 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 18HR TO 12HR)	149
5.6.2	RUN 14 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 12HR TO 10HR)	150
5.6.3	RUN 15 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 10HR TO 8HR)	152
5.6.4	RUN 16 (EM 3.5 % OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 8HR TO 6HR)	153
5.6.5	RUN 17 (EM 3.5 ‰ OF PILOT'S VOLUME AND	
	REDUCED R.T FROM 6HR TO 4HR)	154
5.6.6	HYDRAULIC LOAD EFFECT ON UNIT	
	EFFICIENCY	156
	CHAPTER VI: CONCLUSION	
6.1	INTRODUCTION	157
6.2	CONCLUSION	157
6.3	RECOMMENDATIONS	158
6.4	FURTHUR WORK	158
	REFERENCES	159

LIST OF FIGURES

	Figure	Page
	CHAPTER II: LITERATURE REVIEW	Ö
Figure (2/1)	Schematic diagram of biochemistry of anaerobic process	14
Figure (2/2)	The different systems of up-flow high rate anaerobic reactors	20
Figure (2/3)	Conventional septic tank	22
Figure (2/4)	Schematic diagram of modified septic tank	24
Figure (2/5)	Descriptive photo for the Modified Septic Tank System	
	(USBR) in Abo-Halifa village	25
Figure (2/6)	Modified septic tank which using in this thesis	27
	CHAPTER III: MATERIALS & METHODS	
Figure (3/1)	Schematic diagram of the pilot plant	40
Figure (3/2)	Schematic diagram of the pilot dimensions in cm	41
Figure (3/3)	The pilot plant in El-Berka WWTP	44
Figure (3/4)	Muffle Furnace and drying oven in El-Berka WWTP	46
Figure (3/5)	Sensitive balance in El-Berka WWTP	46
Figure (3/6)	Equipment for COD determination in El-Berka WWTP	47
Figure (3/7)	Equipment of BOD ₅ determination in the plant	48
	CHAPTER IV: RESULTS	
Figure (4/1)	The COD _{tot} values of raw sewage, midpoint and effluent for	
	startup period	52
Figure (4/2)	The COD _{sol} values of raw sewage, midpoint and effluent for	62
- , ,	startup period	53
Figure (4/3)	The BOD ₅ values of raw sewage, midpoint and effluent for	
	startup period	53
Figure (4/4)	The T.S.S values of raw sewage, midpoint and effluent for	
	startup period	54
Figure (4/5)	The V.S.S values of raw sewage, midpoint and effluent for	
	startup period	54
Figure (4/6)	The COD _{tot} values of raw sewage, midpoint and effluent for	
	run1	56
Figure (4/7)	The COD _{sol} values of raw sewage, midpoint and effluent for	
	run1	57
Figure (4/8)	The BOD ₅ values of raw sewage, midpoint and effluent for	
	run1	57
Figure (4/9)	The T.S.S values of raw sewage, midpoint and effluent for	
	run1	58
Figure (4/10)	The V.S.S values of raw sewage, midpoint and effluent for	
	run1	58

60	run2	rigule (4/11)
61	The COD _{sol} values of raw sewage, midpoint and effluent for run2	Figure (4/12)
U1	The BOD ₅ values of raw sewage, midpoint and effluent for	Figure (4/13)
61	run2	
62	The T.S.S values of raw sewage, midpoint and effluent for run2	Figure (4/14)
62	The V.S.S values of raw sewage, midpoint and effluent for run2	Figure (4/15)
64	The COD _{tot} values of raw sewage, midpoint and effluent for run3	Figure (4/16)
65	The COD _{sol} values of raw sewage, midpoint and effluent for run3	Figure (4/17)
65	The BOD ₅ values of raw sewage, midpoint and effluent for run3	Figure (4/18)
66	The T.S.S values of raw sewage, midpoint and effluent for run3	Figure(4/19)
66	The V.S.S values of raw sewage, midpoint and effluent for run3	Figure(4/20)
68	The COD _{tot} values of raw sewage, midpoint and effluent for run4	Figure(4/21)
69	The COD _{sol} values of raw sewage, midpoint and effluent for run4	Figure(4/22)
69	The BOD ₅ values of raw sewage, midpoint and effluent for run4	Figure(4/23)
70	The T.S.S values of raw sewage, midpoint and effluent for run4	Figure(4/24)
70	The V.S.S values of raw sewage, midpoint and effluent for run4	Figure(4/25)
72	The COD _{tot} values of raw sewage, midpoint and effluent for run5	Figure(4/26)
73	The COD _{sol} values of raw sewage, midpoint and effluent for run5	Figure(4/27)
73	The BOD ₅ values of raw sewage, midpoint and effluent for run5	Figure(4/28)
74	The T.S.S values of raw sewage, midpoint and effluent for run5	Figure(4/29)
74	The V.S.S values of raw sewage, midpoint and effluent for run5	Figure(4/30)
76	The COD _{tot} values of raw sewage, midpoint and effluent for run6	Figure(4/31)

Figure(4/32)	The COD _{sol} values of raw sewage, midpoint and effluent for run6	77
Figure(4/33)	The BOD ₅ values of raw sewage, midpoint and effluent for	
Figure(4/34)	run6 The T.S.S values of raw sewage, midpoint and effluent for	77
1 1gu1c(4/34)	run6	78
Figure(4/35)	The V.S.S values of raw sewage, midpoint and effluent for run6	78
Figure(4/36)	The COD _{tot} values of raw sewage, midpoint and effluent for run7	80
Figure(4/37)	The COD _{sol} values of raw sewage, midpoint and effluent for run7	81
Figure(4/38)	The BOD ₅ values of raw sewage, midpoint and effluent for run7	81
Figure(4/39)	The T.S.S values of raw sewage, midpoint and effluent for run7	82
Figure(4/40)	The V.S.S values of raw sewage, midpoint and effluent for run7	82
Figure(4/41)	The COD _{tot} values of raw sewage, midpoint and effluent for run8	84
Figure(4/42)	The COD _{sol} values of raw sewage, midpoint and effluent for run8	85
Figure(4/43)	The BOD ₅ values of raw sewage, midpoint and effluent for run8	85
Figure(4/44)	The T.S.S values of raw sewage, midpoint and effluent for run8	86
Figure(4/45)	The V.S.S values of raw sewage, midpoint and effluent for run8	86
Figure(4/46)	The COD _{tot} values of raw sewage, midpoint and effluent for run9	88
Figure(4/47)	The COD _{sol} values of raw sewage, midpoint and effluent for run9	89
Figure(4/48)	The BOD ₅ values of raw sewage, midpoint and effluent for run9	89
Figure(4/49)	The T.S.S values of raw sewage, midpoint and effluent for run9	90
Figure(4/50)	The V.S.S values of raw sewage, midpoint and effluent for run9	90
Figure(4/51)	The COD _{tot} values of raw sewage, midpoint and effluent for run10	92
Figure(4/52)	The COD _{sol} values of raw sewage, midpoint and effluent for run10	93

Figure(4/53)	The BOD ₅ values of raw sewage, midpoint and effluent for run10	93
Figure(4/54)	The T.S.S values of raw sewage, midpoint and effluent for run10	94
Figure(4/55)	The V.S.S values of raw sewage, midpoint and effluent for	
F: (4/56)	run10	94
Figure(4/56)	The COD _{tot} values of raw sewage, midpoint and effluent for run11	96
Figure(4/57)	The COD _{sol} values of raw sewage, midpoint and effluent for run11	97
Figure(4/58)	The BOD ₅ values of raw sewage, midpoint and effluent for	
Figure(4/59)	run11 The T.S.S values of raw sewage, midpoint and effluent for	97
- , ,	run11	98
Figure(4/60)	The V.S.S values of raw sewage, midpoint and effluent for run11	98
Figure(4/61)	The COD _{tot} values of raw sewage, midpoint and effluent for	400
Figure(4/62)	run12 The COD _{sol} values of raw sewage, midpoint and effluent for	100
1 iguic(4/02)	run12	100
Figure(4/63)	The BOD ₅ values of raw sewage, midpoint and effluent for run12	101
Figure(4/64)	The T.S.S values of raw sewage, midpoint and effluent for run12	101
Figure(4/65)	The V.S.S values of raw sewage, midpoint and effluent for run12	102
Figure(4/66)	The COD _{tot} values of raw sewage, midpoint and effluent for	102
	run13	104
Figure(4/67)	The COD _{sol} values of raw sewage, midpoint and effluent for run13	104
Figure(4/68)	The BOD ₅ values of raw sewage, midpoint and effluent for run13	105
Figure(4/69)	The T.S.S values of raw sewage, midpoint and effluent for run13	105
Figure(4/70)	The V.S.S values of raw sewage, midpoint and effluent for run13	105
Figure(4/71)	The COD _{tot} values of raw sewage, midpoint and effluent for run14	100
Figure(4/72)	The COD _{sol} values of raw sewage, midpoint and effluent for	
Figure(4/73)	run14 The BOD ₅ values of raw sewage, midpoint and effluent for run14	108 108