RECENT APPROACHES IN MANAGEMENT OF ADULT RESPIRATORY DISTRESS SYNDROME / ACUTE LUNG INJURY

An Essay
Submitted For Partial Fulfillment of Master Degree
in Intensive Care

Mohammed Amin M. Al-Mrdanly *M.B.*, *B. Ch.*

Supervised By

Prof. Dr./ Gihan Seif El-Nasr Mohammed

Professor of Anesthesia and Intensive care Faculty of Medicine, Ain Shams University

Prof. Dr./ Salwa Omar El-Khattab Amin

Assistant professor of Anesthesia and Intensive care Faculty of Medicine, Ain Shams University

Dr./ Noha Sayed Hussien

Lecturer of Anesthesia and Intensive care Faculty of Medicine, Ain Shams University

> Ain Shams University Faculty of Medicine 2011

الطرق الحديثة في معالجة متلازمة الضيق التنفسي الحاد والإصابة الحادة للرئة

ر سالــــة

مقدمة من الطبيب / محمد أمين محمد المردنلي بكالوريوس الطب و الجراحة - جامعة القاهرة

توطئة للحصول علي درجة الماجستير في الرعاية المركزة

تحت إشىراف

الأستاذة الدكتورة/ جيهان سيف النصرمحمد أستاذ التخدير و الرعاية المركزة كلية الطب - جامعة عين شمس

الأستاذة الدكتورة/ سلوى عمر الخطاب أمين أستاذ مساعد التخدير و الرعاية المركزة كلية الطب - جامعة عين شمس

> الدكتورة / نهى سيد حسين مدرس التخدير و الرعاية المركزة كلية الطب - جامعة عين شمس

> > جامعة عين شمس كلية الطب ٢٠١١

Summary

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are both defined by the acute onset of bilateral infiltrates consistent with pulmonary edema, but without evidence of elevated left atrial pressure. The severity of the hypoxemia distinguishes ARDS from ALI, being in ARDS an arterial oxygen tension to fraction of inspired oxygen ratio (PaO₂/FiO₂) of 201 to 300 mmHg, while in ALI PaO₂/FiO₂ of ≤200 mmHg

The initial courses of ALI and ARDS are characterized by pulmonary abnormalities that typically develop within 48 hours of the inciting event and rapidly worsen. These include dyspnea, tachypnea, and hypoxemia. Physical examination usually reveals tachycardia, cyanosis, tachypnea, and diffuse rales, while arterial blood gases usually detect an acute respiratory alkalosis, hypoxemia, and an elevated alveolar-arterial oxygen gradient. The initial chest radiograph typically has bilateral, fluffy alveolar infiltrates with prominent air bronchograms. Mechanical ventilation is almost universally required.

Following the initial period, most patients with ALI and ARDS exhibit better oxygenation and decreasing alveolar infiltrates on the chest radiograph. However, some have persistent interstitial infiltrates and ventilator-dependence.

List of Contents

	Page
List of abbreviation	I
List of tables	V
List of figures	VI
Introduction	1
Aim of the work	3
Definitions & Epidemiology	4
Pathophysiology	14
Management	30
Recent advances in management	79
Summary	100
References	103
Arabic summary	

Acknowledgement

First of all, all gratitude is due to **Allah** for bleesing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Gihan Seif El-Nasr Mohammed** Professor of Anesthesia and Intensive Care, faculty of Medicine, Ain Shams University, for her supervision, continous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I am also indebted to **Prof.Dr. Salwa Omar El-Khattab Amin** Professor of Anesthesia and Intensive Care, faculty of Medicine, Ain Shams University, for her guidance and sincere supervision for this work.

I would like also to express my sincere appreciation and gratitude to **Dr. Noha Sayed Hussien** lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her continous directions and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward, this work would not have ever been completed.

List of Abbreviation

AECC American-European Consensus Committee

ALI Acute lung injury
APC Activated protein C

APRV Airway pressure release ventilation **ARDS** Acute respiratory distress syndrome

AT II Angiotensin II

AVCO₂R Arteriovenous carbon dioxide removal

BAL Bronchoalveolar lavage

BIPAP Biphasic positive airway pressure

BMI Body Mass Index

BNP Brain Natriuretic Peptide

BOOP Bronchitis Oblitrans with Organizing Pneumonia

BVV Biological Variable Ventilation

Ca2+ Calcium

C-GMP Cyclic guanosine monophosphate

CHF Congestive heart failure

CO₂ Carbon dioxide

COP Cryptogenic organizing pneumoniaCPAP Continous positive airway pressure

CT Computed tomography
 CVCs Central venous catheters
 CVP Central venous pressure
 DAD Diffuse alveolar damage
 DVT Deep Venous Thrombosis

EC Endothelial cell

ECCO₂R Extracorporeal CO₂ removal

ECMO Extra corporeal membrane oxygenation

EELV End Expiratory Lung Volume

ET-1 Endothelin-1 ETCO₂ End tidal CO₂

ETT Endotracheal tube

FACTT Fluid and Catheter Treatment Trial **FDA** Food and Drug Administration

F_i**O**₂ Fraction of inspired Oxygen Concentration

FRC Functional residual capacity
GRV Gastric Residual Volume

HFOV High-frequency oscillation ventilation

HFPPV High-frequency positive pressure ventilation

HFPV High-frequency percussive ventilation

HFV High-Frequency Ventilation **I: E ratio** Inspiration: expiration ratio

IAEP Idiopathic Acute Esinophilic Pneumonia

IBW Ideal body weight

ICAM-1 Intercellular adhesion molecule-1

ICP Intra cranial pressureICU Intensive care unit

IGF-1 Insulin like growth factor -1

II. Interleukins

IRV Inverse ratio ventilationKGF Keratinocyte growth factor

KGFR Keratinocyte growth factor receptor

LIP The lower inflection point
LIPS Lung Injury Prediction Score

LIS Lung Injury Score

MAP Mean arterial blood pressure

MODS Multi-organ Dysfunction Syndrome

MOF Multi-organ failure
NAC N-acetylcysteine

NaHCO₃ Sodioum bicarbonate

NIH National Institute Of Health

NIV Non-invasive ventilation

NO Nitric oxide

OLB Open lung biopsy

PaCO₂ Partial Pressure of Carbon Dioxide in Arterial blood
 PaCO₂ Partial pressure of Carbon Dioxide in arterial blood

PACs Pulmonary artery catheters
PAF Platelet activating factor

PAI Plasminogen activator inhibitor

Partial pressure of Oxygen in arterial blood

PAOP Pulmonary artery occlusion pressure

PCV Pressure Controlled Ventilation

PCWP Pulmonary capillary wedge pressure

PE Pulmonary Embolism

PEEP Positive end-expiratory pressure

PGI₂ Prostacyclin

Plt Platelet

PLV Partial liquid ventilation

PMNs Polmorph nuclear granulocytes

PMP Polymethylpentane
 Pplat Plateau pressure
 PS Pressure support
 PV Pressure-volume
 RBC Red blood cell

RM Recruitment Maneuver

RNS Reactive Nitrogen SpeciesROS Reactive Oxygen Species

RR Respiratory rate

SaO2 Haemoglobin Oxygen Saturation in arterial blood

SH Thiol group

SIRS Systemic Inflammatory Response Syndrome

SP Surfactant protein

SpO2 Arterial O₂ saturation

TBLB Transbronchial lung biopsy

TFPI Tissue factor pathway inhibitor

TGITracheal gas insufflationsTLVTotal Liquid VentilationTNF-αTumor necrosis factor α

TRIM Timed rexpansion inspiratory manoeuver

TV Tidal volume
TX Thromboxane

UIP The upper inflection pointV/Q ratio Ventilation /perfusion ratio

VA Venoarterial

VALI Ventilator associated lung injury

Vd/Vt Dead space ventilation

VEGF Vascular Endothelial Growth Factor

VILI Ventilator-induced lung injury
VSMC Vascular Smooth Muscle Cells

VV VenoVenous

List of Tables

Table No.	. Title	Page
Table 1:	Components and individual values of LIS	7
Table 2:	AECC Definition of Acute Lung Injury (ALI) and the Acute Respiratory Distress Syndrome (ARDS)	9
Table 3:	Predisposing conditions for ARDS	11
Table 4:	Inflammatory mediators in ARDS	17
Table 5:	Pathophysiology of acute lung injury (ALI) and adult respiratory distress syndrome (ARDS)	18
Table 6:	Progression of clinical findings in ARDS	32
Table 7:	Algorithm for prone positioning	75

list of Figures

Table No.	Title Pag	ŗе
Figure 1:	The Normal Alveolus and the Injured Alveolus in the Acute Phase of ALI and the ARDS	22
Figure 2:	Diffuse alveolar damage, exudative phase2	23
Figure 3:	Diffuse alveolar damage with significant cytologic Atypia	23
Figure 4:	Mechanisms Important in the Resolution of Acute Lung Injury and the Acute Respiratory Distress Syndrome	26
Figure 5:	Diffuse alveolar damage, early proliferative phase	27
Figure 6:	Diffuse alveolar damage, proliferative phase2	27
Figure 7:	Diffuse alveolar damage with extensive metaplastic squamous epithelium with atypia2	28
Figure 8:	Frontal portal chest radiograph showing diffuse bilateral infiltrates consistent with acute lung injury	89
Figure 9:	Computed tomographic scan of the chest showing diffuse infiltrates	4
Figure 10:	The pressure-volume curve6	57

Introduction

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) were first described in 1967, and are characterized by the abrupt onset of clinically significant hypoxaemia (when partial arterial pressure of oxygen [PaO2]/fractional concentration of oxygen in inspired air [FIO2] <300, the disorder is termed ALI and when PaO₂/FIO₂<200, the disorder is termed ARDS), with presence of bilateral diffuse pulmonary infiltrates on radiograph. These disorders affect patients of all ages and usually happen soon after an easily identified triggering event (*Wheeler and Gordon*, 2007).

Acute lung injury and acute respiratory distress syndrome, the most severe stage of ALI, are associated with intra- and extra-pulmonary disorders, including infection, aspiration, trauma, and drug overdose. Mechanical ventilation is the cornerstone of supportive therapy (*Delong et al.*, 2006).

However, despite several important advances, including smaller tidal volumes and higher levels of positive end-expiratory pressure (PEEP), profound hypoxemia is difficult to overcome and mortality rates remain high (Zambon and Vincent, 2008).

Population-based epidemiological study of ALI and ARDS in the United States using standardized definitions

showed an estimated incidence of ALI of 78.9 per 100,000 person-years. The incidence of ARDS was estimated as 58.7 per 100,000 person-years. The incidence of ALI increased dramatically with age, with an incidence of 306 per 100,000 Person/years for ages 75 through 84 years (*Fishman and William*, 2007).

Pathophysiology in the early phase of acute lung injury show leakage of oedema fluid into the lung and inflammatory cellular infiltrates cause diffusion abnormalities and ventilation perfusion mismatch, which clinically manifest as hypoxaemia. Concurrently, cellular infiltration, diffuse atelectasis, and oedema fluid reduce thoracic compliance (*Wheeler and Gordon*, 2007).

Management of patients with ALI and ARDS aims to maintain oxygenation, by using nontoxic FiO_2 (<0.7), PEEP, and mechanical ventilation, protective ventilatory strategy by adopting a low tidal volume, high PEEP with a limit (\leq 30 cm H_2O) on static end-inspiratory airway pressure (plateau pressure) to guard against barotrauma, enhance patient-ventilator synchrony and patient comfort by use of sedation, amnesia, opioid analgesia, and pharmacological paralysis, support or treat other organ system dysfunction or failure, general critical care (preventive and homeostatic measures) and adequate early nutritional support (*Fishman and William*, 2007).

Aim of the Work

Our study aims at discussing the most important causes of ARDS, explaining how to diagnose, the pathopyisiology and presenting the new concepts of mechanical ventilation in ARDS and current controversies.

Definitions & Epidemiology

Definitions of ARDS

Criteria for ARDS: the presence of severe dyspnea, tachypnea, cyanosis that is refractory to oxygen therapy, loss of lung compliance and diffuse alveolar infiltration on chest x-ray (*Ashbaugh and Petty, 1967*). A PaO₂/FiO₂ ratio lower than 150 to define the level of hypoxemia needed to classify patients as affected by ARDS (*Bone et al., 1979*).

In 1979, National heart, Lung and Blood Institute revised the criteria and defined them more strictly as to select patients to be enrolled in a collaborative study. Two operative definitions to select patients with ARDS were designed: the first to enhance specificity (not including temporary conditions) - the fast entry criteria - included a PaO₂ lower than 50 mmHg for more than two hours with a FiO₂ equal to 1 and a PEEP level equal to or higher than 5 cm H₂O; the second, not to limit sensibility (including very severe cases) - the slow entry criteria - included a PaO₂ lower than 50 mmHg for more than twelve hours with a FiO₂ equal to 0.6, a PEEP level equal to or higher than 5 cm H₂O and a shunt fraction higher than 30% after 48 hours of maximal medical therapy (National heart, Lung and Blood Institute, 1979).