Prenatal Detection, Intrauterine Vesico-amniotic Shunting and Postnatal Follow up of Isolated Lower Urinary Tract Obstruction Cases

Thesis

Submitted for Fulfillment of MD Degree in Pediatrics

By Sarah Samir El Tatawy

Supervised by

Prof. Dr. Iman Seoud

Professor of Pediatrics and Former Head of the Pediatrics Department Faculty of Medicine, Cairo University

Prof. Dr. Iman Iskandar

Professor of Pediatrics
Faculty of Medicine, Cairo University

Prof. Dr. Mohamed Momtaz

Professor of Obstetrics and Gynecology Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2012

Acknowledgment

I would firstly like to express my deepest gratitude to my dear professor and guardian, Prof Dr. Iman Seoud, for her help and guidance, not just on this paper, but throughout my whole career and life. I owe her my utmost love and respect.

I would like to thank Prof Dr. Mohamed Momtaz for giving me the opportunity to work in the perinatal field and for teaching me new skills and educating me about the world of fetal medicine. His wisdom and encouragement were fundamental to the completion of this work.

I would like to send my most sincere appreciation and admiration to Prof Dr. Iman Iskandar for helping and guiding me through all the details of this work. Her constructive suggestions and crucial advice has been an invaluable asset to this work.

I would also like to extend my regards to everyone at the Fetal Medicine Department at Kasr Al Aini for being helpful and cooperative with this work and throughout the year I spent among them.

As always, my family has been a pillar of support for me during this endeavor. My love goes to my father for helping me edit this paper and to my brothers for assisting me with the technical aspects of the presentation, and to my husband for his emotional support.

Last but most important, I am eternally grateful to Prof Dr. Nadia Badrawi, my mother and mentor, who has always been the wind beneath my sails, continuously encouraging me, and pushing me to achieve more, and rise to higher standards. I am who I am today because of her.

Contents

Abstract	1
Introduction	3
Rationale and Background	4
Objectives of the Study	7
Review of the Literature	8
Development and Embryology of the fetal Kidneys and Urinary tract	9
Development of the fetal kidney and Urinary Tract	10
Embryology of the male urethra	11
Anatomy of the Urinary tract	23
Types of Congenital Anomalies of the Urethra	34
Types of Congenital Anomalies of the Urethra	35
Epidemiology and Etiology of the Congenital Lower Urina Tract Anomalies	-
Incidence and Prevalence	47
Genetic and Environmental Factors Associated with Lower Urinary Tract Obstruction	51
Pathophysiology of LUTO	
Prenatal Diagnosis of Lower Urinary Tract Obstruction	59
Radiological Evaluation	60
Fetal Urine, Fetal Serum and Fetal Renal Biopsy	72

Treatment and Outcomes of Congenital Lower Urinary Tra Obstruction	
Treatment of Congenital Urinary Tract Obstruction	75
Outcomes of Lower Urinary Tract Obstruction	88
Patients and Methods	91
Results	104
Discussion	157
Summary	173
Conclusions and Recommendations	176
Appendices	179
References	193
Arabic Summary ملخص باللغة العربية	217

List of Figures

Figure 1: Induction of Nephrons	.14
Figure 2: Ureteric and Metanephric Bud Derivatives	.15
Figure 3: Developing Kidneys	.16
Figure 4: Embryologic development of the male genitourinary	
tract	.17
Figure 5: Embryologic development of the male genitourinary	
tract	.18
Figure 6: Embryologic development of the male genitourinary	
tract	.19
Figure 7: Embryologic development of the male genitourinary	
tract. Median cleavage of the urethral plate occurs	.20
Figure 8: Compartmentalization of cloaca	.21
Figure 9: Changing anatomical relationships of ureters and	
mesonephric duct derivatives	.22
Figure 10: Sagittal section through the pelvis of a newly born	
male child	.28
Figure 11: Sagittal section through the pelvis of a newly born	
female child	.28
Figure 12: Male Urethra	.30
Figure 13: Normal male urethral anatomy	.31
Figure 14: Normal urethral anatomy	.32
Figure 15: Percutaneous insertion of vesico-amniotic shunt	.82
Figure 16: Procedure for fetal urine sampling	138
Figure 17: Fetus after failure of vesico-amniotic shunt	140
Figure 18: 'keyhole' sign	142
Figure 19: Vesico-amniotic shunt insertion	143

Figure 20: Properly placed shunt	. 145
Figure 21: Improvement of condition after shunt placement.	.146
Figure 22: Hydronephrosis	. 148
Figure 23: Thick bladder wall	.149
Figure 24: Vesico-amniotic shunt placement	. 151
Figure 25: Displacement of the shunt	.152

List of Tables

Table 1: The Mean Maternal Age at Diagnosis	.05
Table 2: Significance of maternal history in correlation to LUTO)
1	.06
Table 3: Gestational Age at the Time of Diagnosis 1	
Table 4: Comparison between AFI in Normal Vs LUTO Patients	
	.07
Table 5: Comparison of Fetal Bladder Size in LUTO Vs Normal	
Patients1	.10
Table 6: Fetal Bladder Wall Thickness in the LUTO patients1	.13
Table 7: Comparison between Kidney Lengths in LUTO Vs Norm	nal
Patients1	.15
Table 8: Comparison between Kidney Transverse Diameters in	
LUTO Vs Normal Patients1	.18
Table 9: Neonatal outcome of interventional and conservative	
groups1	.32
Table 10: Comparison of Perinatal Outcomes between	
Conservative and Intervention Groups1	.35

List of Graphs

Graph 1: Comparison of AFI in Normal Vs. LUTO Patients Pe	r
Gestational Age	108
Graph 2: Follow Up of AFI by Serial Ultrasounds	109
Graph 3: Comparison of Fetal Bladder Size in Normal Vs LUT	·O
Patients per Gestational Age	111
Graph 4: Follow up of Fetal Bladder Sagittal Length on Seria	I
Ultrasounds	112
Graph 5: Fetal Bladder Wall Thickness in LUTO patients	113
Graph 6: Follow Up of Fetal Bladder Wall Thickness by Seria	l
Ultrasounds	114
Graph 7: Comparison between Fetal Kidney Lengths in LUTO) Vs
Normal Patients	116
Graph 8: Follow Up of Fetal Kidney Lengths by Serial Ultraso	ounds
	117
Graph 9: Comparison between Fetal Kidney Transverse	
Diameters in LUTO Vs Normal Patients	119
Graph 10: Follow Up of Fetal Kidney Transverse Diameters I	31 7
	Jy
Serial Ultrasounds	-
Serial UltrasoundsGraph 11: Fetal Urinary Sodium Levels	120
	120 121
Graph 11: Fetal Urinary Sodium Levels	120 121 122
Graph 11: Fetal Urinary Sodium Levels	120 121 122 123
Graph 11: Fetal Urinary Sodium Levels	120 121 122 123
Graph 11: Fetal Urinary Sodium Levels	120 121 122 123 124
Graph 11: Fetal Urinary Sodium Levels	120 121 122 123 124 125

Graph 19: Perinatal outcome of the Interventional group	. 129
Graph 20: Failure of vesico-amniotic shunts	.130
Graph 21: Perinatal outcome of the conservative group	.131
Graph 22: Neonatal Outcome of the Interventional Group	.133
Graph 23: Neonatal Outcome of the conservative group	.134

List of Appendices

Appendix 1: The amniotic fluid index in normal human	
pregnancy	180
Appendix 2: Fetal Bladder Wall Thickness in Normal Vs	
Obstructed Patients	181
Appendix 3: Growth of Longitudinal Length of the Kidney w	/ith
Gestational Age	182
Appendix 4: Growth of Transverse Diameter of the Kidney	with
Gestational Age	183
Appendix 5: Urinary Components and Their Usefulness in	
Predicting Renal Dysplasia	184
Appendix 6: Normal Values of Fetal Urine	185
Appendix 7: Table of Results	186

List of Abbreviations

ACE Angiotensin Converting Enzyme

AGT Angiotensinogen

AGTr1a/b Angiotensin II receptor, type 1a/b

AGTr2 Angiotensin II receptor, type 2

AFI Amniotic Fluid Index

ARPKD Autosomal Recessive Polycystic Kidney Disease

AUD Anterior Urethral Diverticulum

AUV Anterior Urethral Valves

CAKUT Congenital Anomalies of the Kidney and Urinary Tract

CI Confidence Interval

COPUM Congenital Obstructive Posterior Urethral Membrane

CUF Congenital Urethroperineal Fistula

CUTA Congenital Urinary Tract Abnormalities

FBSL Fetal Bladder Sagittal Length

FDA Food and Drug Administration

HDE Humanitarian Device Exemption

ICD10 International Classification of Diseases version 10

LUTO Lower Urinary Tract Obstruction

MCDK Multicystic Dysplastic Kidney

MDC Mullerian Duct Cyst

MRI Magnetic Resonance Imaging

PBS Prune-Belly Syndrome

PUV Posterior Urethral Valve

RAS Renin-Angiotensin System

TOP Termination of Pregnancy

UPJ Ureteropelvic Junction

US Ultrasonography

UTO Urinary Tract Obstruction

UVJ Ureterovesical Junction

VACTERL Vertebral anomalies, Anal atresia, Cardiovascular anomalies,

Tracheoesophageal fistula, Renal anomalies, and Limb

abnormalities

VCUG Voiding Cystourethrogram

VUR Vesicoureteral Reflux

WMCAR West Midlands Congenital Anomaly Register

Abstract

Prenatal Detection, Intrauterine Vesico-amniotic Shunting and Postnatal Follow up of Isolated Lower Urinary Tract Obstruction Cases

<u>Objectives:</u> The objectives of the study were to determine whether intrauterine vesico-amniotic shunting for fetal bladder outflow obstruction, versus a conservative non-interventional approach improves prenatal and postnatal mortality, morbidity, and renal functions of isolated lower urinary tract obstruction cases. We aimed to find a prognostic index for cases of fetal lower urinary tract obstruction and to determine the safety and efficacy of the shunting procedure.

Patients and Methods: The study included 20 cases of lower urinary tract obstruction (LUTO). Initial ultrasonography was done to all our cases upon detection of the lower urinary tract obstruction and a follow up ultrasounds were performed on 9 cases. The most important indicator to predict renal function was fetal bladder size. Bladder wall thickness, amniotic fluid index and the size of the kidney were of lesser value in the early detection of LUTO. Fetal urine analytes including Sodium, Potassium, Chloride, Calcium, Creatinine and B2 microglobulin were analyzed in 16 cases. In our study of 20 LUTO patients, 6 fell into the intervention group and 14 into the conservative group.

<u>Results:</u> The perinatal and neonatal outcomes of the interventional group were 33.3% terminations of pregnancy, 33.3% miscarriage, 16.6% neonatal death and 16.6% alive at 28 days. The conservative group results included 36% terminations of pregnancy, 7% miscarriage, 14% neonatal deaths, 7% alive at 28 days and 36% dropouts.

<u>Conclusion</u>: Fetal urine biochemical analysis results were not in accordance with the ultrasonographic results nor were they useful in predicting severity of disease and neonatal outcome. Fetal bladder sagittal length was the most important sign in early diagnosis of LUTO. Vesico-amniotic shunting did not alleviate the LUTO condition, nor did it affect neonatal mortality or morbidity.

Keywords: Lower urinary tract obstruction (LUTO), vesico-amniotic shunt, fetal urine analysis, prenatal diagnoses of LUTO, prenatal management of LUTO.

Introduction