ABSTRACT

Atef Rashed Mohammad Alawneh: Production and Quality Evaluation of Gluten-Free Bread. Unpublished Master of Science Dissertation, Department of Food Sci., Fac. of Agric., Ain Shams University, 2012.

The current study was designed in order to improve the quality of products available for consumers who require gluten-free bread. This study examined the effects of rice flour, potato starch and corn starch as well as, different gluten replacer such as xanthan and guar gums on physical, sensory and freshness properties of gluten-free bread were storage at room temperature $(25\pm 2^{\circ}C)$ for three day. In the case of gluten-free pan bread (GFPB) formulation, gums clearly improved the weight, volume, specific volume of breads by allowing the entrapment of air bubble in dough and providing stability to the dough mixture during baking. Specific volume values of GFPB were not high; this may be explained by making dough system too rigid to incorporate gases which also resulted in low specific volume values, although xanthan had the most pronounced effect on viscoelastic properties of the dough. Color is an important characteristic for baked products because it, together with texture and aroma, contributes to consumer preference. It depends on physicochemical characteristic of dough (water content, pH, reducing sugars and amino acids content) and on operating conditions. Hydrocolloids are added to bread to extent their shelf-life by keeping the moisture content and retarding the staling, during storage of GFPB for 72 h at room temperature (25 $\pm 2^{\circ}$ C), the most evident change are related to moisture content loss and hardening of bread, it can be observed the effect of selected hydrocolloid on the moisture retention of GFPB. Breads formulation A4, A5 and A1 with xanthan gums showed lower loss of moisture content after 72 h of storage at room temperature, Bread staling is a very complex process that cannot be explained by a single effect, amylose retrogradation, reorganization of polymers within the amorphous region, loss of moisture content, distribution of water content between the

amorphous and crystalline zone and the crumb macroscopic structure must participate in the staling process. The effect of different bread formulation on staling of gluten-free flat bread (GFPB) is shown significant difference (p≤0.05) was evident in the staling of control bread and other GFPB formulations. Bread with A5-XG3, A5-X3, A4-X3 and A4-XG2 remained softer. The sensory evaluation data demonstrated that GFBB did not very significantly in all of the sensory characteristic evaluation. Generally, all GFPB formulations were acceptable, since they received much higher in selected quality characteristics. Positive significant correlations were found between taste and bread formulation; odor and freshness; staling and freshness, odor, bread formulation, moisture content and crust color, as well as between volume, staling, freshness and odor.

In conclusion, the effect of rice flour, corn starch and potato starch at different levels with addition of 3% xanthan and 2 or 3% xanthan-guar blend (50:50) on the physical, sensory and staling properties of GFFB was studied. Results show that gums clearly improved the weight, volume, specific volume and circulation of GFBB. Bread formulations A4-X3, A1-X3, A5-XG3 and A4-XG2 showed lower loss of moisture content after 72 h of storage at room temperature, which recorded higher moisture retention 94.4, 93.7, 92.3 and 92.1% respectively compared to control (89.4 %). All GFBB formulations were sensory acceptable, since they recorded higher scores in studied quality characteristics. Bread formulations A4-X3, A4-XG2, A5-X3 and A5-XG3 had lower hardness and remained softer up to 72 h of storage period compared to other treatments. It could be concluded that the formulations A4 (rice flour: corn starch: potato starch, 40: 20: 40%) followed by A5 (rice flour: corn starch: potato starch, 40: 40: 20%) with 3% xanthan were the best for production of GFFB.

Key words: Gluten-free bread, xanthan gum, guar gum, flat bread, rice flour, potato starch, corn starch.

CONTENTS

	page
LIST OF TABLES	V
LIST OF FIGURES	VIII
LIST OF ABBREVIATION	X
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Celiac disease (CD)	5
2.1.1. Pathogenesis	5
2.1.2. Prevalence of CD	8
2.1.3. Treatment: Gluten-free diet	10
2.2. Gluten	10
2.3. Gluten-free breads	11
2.3.1. Material of gluten-free breads	11
2.3.2. Hydrocolloids	13
2.3.2.1. Xanthan	13
2.3.2.2. Guar gum	15
2.3.2.3. Interaction between hydrocolloids	16
2.4. Rheological properties of dough breads	16
2.5. Quality characteristics of breads	19
2.5.1. Quality characteristics of pan breads	19
2.5.2. Quality characteristics flat breads	22
2.6. Color grad of bread	23
2.7. Staling rate of gluten-free bread	26
2.8. Sensory evaluation of gluten-free bread	29
2.9. Costing of gluten-free bread	31
3. MATERIALS AND METHODS	35
3.1. Materials	35
3.1.1. Rice flour	35
3.1.2.Potato starch	35

3.1.3. Corn starch	35
3.1.4. Wheat flour	35
3.1.5. Corn oil, Salt, Sugar and Compressed yeast	35
3.1.6. Hydrocolloids	35
3.1.7. Chemicals	35
3.2. Methods	35
3.2.1. Chemical analysis of raw material	35
3.2.2. Rheological properties of pan breads	36
3.2.3. Processing of breads	36
3.2.3.1. Pan bread Processing	36
3.2.3.2. Flat bread processing	38
3.2.4. Physical properties of breads	39
3.2.4.1. Physical properties of pan bread	39
3.2.4.2. Physical properties of flat bread	39
3.2.5. Color Grade of breads	40
3.2.6. Sensory evaluation	40
3.2.6. 1. Pan bread	40
3.2.5. 2. Flat bread	41
3.2.7. Determination of bread staling	43
3.2.7.1. Pan bread	43
3.2.7.2. Flat bread	43
3.2.8. Bread freshness	44
3.2.9. Determination of moisture content	44
3.2.10. Statistical analysis	44
4. RESULTS AND DISCUSSION	45
4.1. Proximate chemical composition	45
4. 2. Rheological properties	46
4.2.1. Description of flow curves	47
4.2.2. The Rheological parameters of dough mixture	56
4.3. Baking characteristics and quality of gluten-free pan	61
bread	

4.3.1. Baking characteristics of GFPB formula A1	61
4.3.2. Baking characteristics of GFPB formula A2	65
4.3.3. Baking characteristics of GFPB formula A3	68
4.3.4. Baking characteristics of GFPB formula A4	72
4.3.5. Baking characteristics of GFPB formula A5	75
4.4. Crust and crumb color of GFPB	78
4.4.1. Crust and crumb color of GFPB formula A1	78
4.4.2.Crust and crumb color of GFPB formula A2	81
4.4.3.Crust and crumb color of GFPB formula A3	83
4.4.4.Crust and crumb color of GFPB formula A4	86
4.4.5.Crust and crumb color of GFPB formula A5	88
4.5. Moisture content of Gluten-free pan bread formula	91
4.5.1. Moisture content (%) of GFPB formula A1	91
4.5.2. Moisture content (%) of GFPB formula A2	93
4.5.3. Moisture content (%) of GFPB formula A3	95
4.5.4. Moisture content (%) of GFPB formula A4	96
4.5.5. Moisture content (%) of GFPB formula A5	98
4.6. Staling of gluten-free bread during storage	99
4.6.1. Bread staling of GFPB formula A1	100
4.6.2. Bread staling of GFPB formula A2	101
4.6.3. Bread staling of GFPB formula A3	105
4.6.4. Bread staling of GFPB formula A4	107
4.6.5. Bread staling of GFPB formula A5	110
4.7. Sensory characteristics	112
4.7.1. Sensory characteristics of GFPB formula A1	112
4.7.2. Sensory evaluation of GFPB formula A2	116
4.7.3. Sensory evaluation of GFPB formula A3	119
4.7.4. Sensory evaluation of GFPB formula A4	122
4.7.5. Sensory evaluation of GFPB formula A5	125
4.7.6. Correlation coefficient between physical and	128
sensory properties of gluten-free pan bread formulas	

4.8. Flat bread	
4.8.1.Physical properties of gluten-free flat bread	132
4.8.2.Crust and crumb color of gluten-free flat bread	134
4.8.3. Changes in moisture content during storage period	136
4.8.4. Staling rate of gluten-free flat breads	137
4.8.5. Sensory characteristics of gluten-free flat breads	139
4.8.6. Correlation coefficients between physical and	140
sensory properties of GFFB	
5. SUMMARY	141
6. REFERENCES	146
ARABIC SUMMARY	

LIST OF FIGURES

No.	Title	Page
1	Carton highlighting step involved in pathogenesis of CD	7
2	Primary structure of xanthan gum	14
3	Primary structure of guar gum	15
4	L* a* b* color space, redrawn from Young & West	24
5	The score sheet used by the panelists for sensory	42
	evaluation of pan bread and flat bread	
6	Flow curves obtained for bread dough's formula A1	53
7	Flow curves obtained for control wheat dough (R)	53
8	Flow curves obtained for bread dough's formula A2	54
9	Flow curves obtained for bread dough's formula A3	54
10	Flow curves obtained for bread dough's formula A4	55
11	Flow curves obtained for bread dough's formula A5	55
12	Relative specific volume index of GFPB formula A1	63
13	Relative baking loss index of GFPB formula A1	64
14	Relative bread yield index of GFPB formula A1	64
15	Relative specific volume index of GFPB formula A2	67
16	Relative baking loss index of GFPB formula A2	67
17	Relative bread yield index of GFPB formula A2	68
18	Relative specific volume index of GFPB formula A3	70
19	Relative baking loss index of GFPB formula A3	71
20	Relative bread yield index of GFPB formula A3	71
21	Relative specific volume index of GFPB formula A4	73
22	Relative baking loss index of GFPB formula A4	74
23	Relative bread yield index of GFPB formula A4	74
24	Relative specific volume index of GFPB formula A5	76
25	Relative baking loss index of GFPB formula A5	77
26	Relative bread yield index of GFPB formula A5	78
27	Moisture retention (%) of gluten-free pan bread (GFPB)	92
	formula A1 up to 72h of storage.) _
28	Moisture retention (%) of GFPB formula A2 up to 72h	94
	of storage	ノゴ
29	Moisture retention (%) of GFPB formula A3 up to 72h	96

	of storage	
30	Moisture retention (%) of GFPB formula A4 up to 72h	97
	of storage	91
31	Moisture retention (%) of GFPB formula A5 up to 72h	99
	of storage	,,
32	Hardness index by penetrometer of GFPB formula A1	101
33	Relative Staling (%) of GFPB formula A1 up to 72h of storage	102
34	Relative Staling (%) of GFPB formula A2 up to 72h of storage	103
35	Hardness index by penetrometer of GFPB formula A2	104
36	Hardness index by penetrometer of GFPB formula A3	106
37	Relative Staling (%) of GFPB formula A3 up to 72h of	40-
	storage	107
38	Hardness index by penetrometer of GFPB formula A4	109
39	Relative Staling (%) of GFPB formula A4 up to 72h of	109
	storage	109
40	Hardness index by penetrometer of GFPB formula A5	111
41	Relative Staling (%) of GFPB formula A5 up to 72h of	112
	storage	114
42	Freshness index of GFPB formula A1 up to 72h of storage	115
43	Freshness index of GFPB formula A2 up to 72h of	118
1.1	storage Freehoose index of CEDD formula A2 up to 72h of	
44	Freshness index of GFPB formula A3 up to 72h of storage	119
45	Freshness index of GFPB formula A4 up to 72h of storage	124
46	Freshness index of GFPB formula A5 up to 72h of storage	127
40 47	Relative baking characeristics of GFFB	133
48	Moisture retention (%) of GFFB up to 72h of storage	133
40 49	The rate of pentrometer decrease (%) during storage of	13/
マク	GFFB	138
	ענוט	

LIST OF TABLES

No.	Title	Page
1	Prevalence of Celiac disease based on clinical diagnosis	9
I	or screening	9
2	Gluten free pan bread (GFPB) formula	37
3	The level of hydrocolloids added for GFPB formula	38
4	Formulation (%)of gluten-free flat bread	39
5	Proximate chemical composition of raw material	46
6	Shear stress respond obtained at the tested shear rate	48
	values of bread dough's formulation A1	10
7	Shear stress respond obtained at the tested shear rate	49
	values of GFPB formulaA2	1,7
8	Shear stress respond obtained at the tested shear rate	50
	values of GFPB formulaA3	20
9	Shear stress respond obtained at the tested shear rate	51
	values of GFPB formulaA4	01
10	Shear stress respond obtained at the tested shear rate	52
	values of GFPB formulaA5	
11	Flow parameter of dough sample of GFPB formula A1	57
12	Flow parameter of dough sample of GFPB formula A2	57
13	Flow parameter of dough sample of GFPB formula A3	58
14	Flow parameter of dough sample of GFPB formula A4	58
15	Flow parameter of dough sample of GFPB formula A5	59
16	Baking characteristics and quality of GFPB formula A1	62
17	Baking characteristics and quality of GFPB formula A2	65
18	Baking characteristics and quality of GFPB formula A3	69
19	Baking characteristics and quality of GFPB formula A4	72
20	Baking characteristics and quality of GFPB formula A5	76
21	Crust color of GFPB formula A1	79
22	Crumb color of GFPB formula A1	80

23	Crust color of GFPB formula A2	81
24	Crumb color of GFPB formula A2	83
25	Crust color of GFPB formula A3	84
26	Crumb color of GFPB formula A3	85
27	Crust color of GFPB formula A4	87
28	Crumb color of GFPB formula A4	88
29	Crust color of GFPB formula A5	89
30	Crumb color of GFPB formula A5	90
31	Moisture content (%) of GFPB formula A1	92
32	Moisture content (%) of GFPB formula A2	93
33	Moisture content(%) of GFPB formula A3	95
34	Moisture content(%) of GFPB formula A4	97
35	Moisture content(%) of GFPB formula A5	98
36	Bread staling by penetrometer of GFPB formula A1	100
37	Bread staling by penetrometer of GFPB formula A2	102
38	Bread staling by penetrometer of GFPB formula A3	104
39	Bread staling by penetrometer of GFPB formula A4	105
40	Bread staling by penetrometer of GFPB formula 5	110
41	Mean scores of sensory characteristics GFPB formula A1	114
42	Mean scores of Freshness characteristics of GFPB formula A1	115
43	Mean scores of sensory characteristics of GFPB formula A2	117
44	Mean scores of Freshness characteristics of GFPB formula A2	118
45	Mean scores of sensory characteristics of GFPB formula A3	120
46	Mean scores of Freshness characteristics of GFPB formula A3	121
47		123

	A4	
48	Mean scores of Freshness characteristics of GFPB formula A4	124
49	Mean scores of sensory characteristics of GFPB formula A5	126
50	Mean scores of Freshness characteristics of GFPB formula A5	127
51	Correlation coefficients between physical and sensory properties of GFPB formula A1	128
52	Correlation coefficients between physical and sensory properties of GFPB formula A2	129
53	Correlation coefficients between physical and sensory properties of GFPB formula A3	130
54	Correlation coefficients between physical and sensory properties of GFPB formula A4	130
55	Correlation coefficients between physical and sensory properties of GFPB formula A5	131
56	Baking characteristics and quality of GFFB	132
57	Crust color of gluten free flat bread	134
58	Crumb color of gluten free flat bread	135
59	Moisture content (%) of GFFB during storage	136
60	Change in staling of GFFB during storage	138
61	Mean scores of sensory characteristics of GFFB	139
62	Mean scores of freshness of gluten-free flat breads	139
63	Correlation coefficients between physical and sensory properties of GFFB	140

1. INTRODUCTION

Bread is an important staple food consumed all over the world; Wheat (Triticum aestivum) flour of both hard and soft wheat classes has been the major ingredient of bread for many years. Celiac disease (glutensensitive enteropathy) is an autoimmune disease triggered by consumption of cereal wheat (gliadin), rye (secalin), barley (hordein). The substance is that these prolamins can cause the characteristic symptoms of celiac disease (CD), like damaging the small intestine in subjects who are predisposed to it. Therapy consists of a gluten-free diet. Although nowadays oats are generally considered not to be harmful, it has to be pointed out that it is still a potential problem that oats are frequently contaminated by wheat, therefore it is also prohibited in the celiac diet. There are no conclusive clinical data on the threshold of gluten sensitivity of celiac patients. Contamination of foodstuff constituents and inadvertent dietary transgressions are not rare. Accordingly, the food producers have to guarantee that their products are free from gluten; otherwise the labeling of gluten content is obligatory (Gallagher, 2004).

Gliadin is one of two proteins in flour that make up gluten. As the structure-forming protein in bread, gluten provides the dough capacity to entrap and expand with gas-cell development creating the flexible open cell crumb, when gluten is removed ,the bread crumb quality is reduced producing a dense crumbly loaf .Since the only treatment for CD is a lifelong adherence to a gluten-free lifestyle, it is imperative to develop consumer-acceptable gluten-free breads (GFB).Sine final loaf quality is dependent of the physicochemical properties of the dough, material deformation and water migration behavior becomes essential to characterize the system (Crockett,2009).

Gluten-free bread (GFB) containing more starch, and lack with viscoelastic protein make up of wheat flour .A common practice to increase the gluten free dough elasticity, improving gas retention, is the addition of alternative proteins and hydrocolloids, many research has

been conducted using a combination of hydrocolloids and proteins in bread formulation, since the functionality of ingredients will be interaction of all components of the matrix (Gambuś et al., 2007).

The effect of hydrocolloids on dough rheology and bread quality parameters in GF formulations based on rice flour ,corn starch was studied, the rheological behavior of the batter containing hydrocolloids showed that xanthan had the most pronounced effect on viscoelastic properties (Lazaridou et al., 2007). Sensory parameter of GFB depend on the amount and type of hydrocolloids used as gluten replacers, as this determines interactions between them and starch ,the evaluation of GFB supplemented with various amounts of guar gum and xanthan, proved that bread with addition of xanthan has higher volume in comparison with guar gum (Gambus et al., 2001).

Since the batter undergoes stress during proofing and mixing it is also critical to study the batter rheological properties. In wheat dough, there is a direct correlation between dough handling ability and final loaf quality, the rheological properties of GFB studied using rheometer and compared with wheat dough to find its suitability for making GFB (Demirkesen et al., 2010a & Sivaramakrishnan et al., 2004).

Gluten-free bread often has poor crust and crumb characteristics (Gallagher et al., 2003a).

The aim of this study was to improve the quality of gluten-free bread made from corn starch, potato starch and rice flours. Therefore, the purpose of the present study was to investigate the following main points:

- Studying the effect of replacement of rice flour, corn starch and potato starch at different levels on quality properties of gluten-free bread.
- Investigate the effect of gum addition on dough rheological behavior.
- Feasibility of production of pan and flat gluten-free bread with different levels of rice flour, corn starch and potato starch.

- Characterize quality attributes in the gum –added gluten-free bread and determine an optimal formulation with gum addition.
- Investigation the physical properties, sensory attributes and staling rate of resultant breads.

.

2. REVIEW OF LITERATURE

Bread is a product with great nutritional value, consumed worldwide. In order to extend its shelf life, bread is one of the most consumed food products known to humans, and for some people, it is the principal source of nutrition. Bread is an inexpensive source of energy: it contains carbohydrates, lipids, and proteins, and it is important as a source of essential vitamins of the B complex and of vitamin E, minerals and trace elements. The history of bread can be traced back about six millennia. Breadmaking is an ancient art that is closely connected with the development of the human race and civilization, but the development of the baking oven, the industrial production of baker's yeast in the nineteenth century, was decisive for the technology of breadmaking. The twentieth century led to technical advances and the rationalization of bread production. Some of these advances in breadmaking include knowledge about physical-chemical changes in dough, the rheology of flour and dough, and the development of different instrumentations of rheology. Research into breadmaking is currently concerned with staling, the influence of the different additives on the breadmaking process, and the rheological properties of flour, dough, and bread, in order to improve its quality (Clerci et al., 2009).

2.1. Celiac Disease

Celiac disease (CD), also known as celiac sprue and gluten-sensitive enteropathy, is a permanent intolerance to the ingestion of gluten. Gluten triggers the atrophy and flattening of the villi in the small intestine, resulting in, among other things, inadequate digestion and absorption of nutrients. Celiac disease is a syndrome characterized by damage of the small intestinal mucosa caused by gliadin fraction of wheat gluten as are similar proteins in barley (hordein), rye (secalin) and possibly oats (avinins) in genetically susceptible subjects. The presence of gluten in these subjects leads to self-perpetuating mucosal damage, whereas elimination of gluten results in full mucosal recovery. The