STUDIES ON SOME ACCLIMATIZATION METHODS OF IN-VITRO PROPAGATED PLANTLETS OF TWO DRY DATE PALM SAKKUTY AND BARTAMODDA CVS

By MERVAT HASSAN MOHAMED MALHAT

B.Sc. Agric.Cooperative Sc., Higher Institute for Agricultural Cooperation, 1995

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science

(Pomology)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON SOME ACCLIMATIZATION METHODS OF IN-VITRO PROPAGATED PLANTLETS OF TWO DRY DATE PALM SAKKUTY AND BARTAMODDA CVS

By

MERVAT HASSAN MOHAMED MALHAT

B.Sc. Agric.Cooperative Sc., Higher Institute for Agricultural Cooperation, 1995

By

MERVAT HASSAN MOHAMED MALHAT

B.Sc. Agric.Cooperative Sc., Higher Institute for Agricultural Cooperation, 1995

This thesis for M.Sc. degree has been approved by:
Dr. Ibrahim Abd El- Maksoud Ibrahim
Prof. of plant Biotechnology, Genetic Engineering and Biotechnology Research Institute, Menufiya University
Dr. Mohamed Abou Rawash Ali Badr Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams University Dr. Ahmed Abd El-Hamid Ahmed Associate prof. of Pomology, , Faculty of Agriculture, Ain Shams University Dr. Hassan M. Fad hel El – Wakeel
Prof. of Pomology, Faculty of Agriculture, Ain Shams University.
Date of Examination: / / 2012

دراسات على بعض طرق أقلمة نبيتات صنفى نخيل البلح الجاف السكوتى والبرتمودا المكثرة معملياً

رسالة مقرمة من

مرفت حسن محمد ملهط بكالوريوس علوم تعاونية زراعية المعهد العالى للتعاون الزراعي 1995.

للحصول على درجة الماجستير في العلوم الزراعية (فاكهة)

قسم البساتين كلية الزراعة جامعة عين شمس

ABSTRACT

Mervat Hassan Mohamed Malhat: Studies on some Acclimatization Methods of *in-vitro* propagated plantlets of two dry Date Palm Sakkuty and Bartamodda cvs. Unpublished M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2012.

This study was achieved at the Central Laboratory of Date Palm Researches and Development, Giza, Egypt, during the period from 2007 to 2011 to investigate the *in-vitro* rooting and to increase survival percentage during *exvitro* acclimatization of date palm cvs. Bartamodda and Sakkuty plantlets which produced through tissue culture technique. The effect of gelling agent (Agar-Gelrite), sucrose ,activated charcoal, polyethylene glycol (PEG), and light intensity were studied .Also *in-vivo* acclimatization in the free living conditions was investigated as well as the effect of Antitranspiration agent in green house and planting medium. Results indicated that, maximum rooting was achieved by 0.5 MS+1mg/l NAA+1gm/l activate charcoal+170mg/lNaH2Po4+2mg/l glycin+40g/ Sucrose. At the two subculture for the studied date palm cvs.

Regarding the "Sakkuty" cv., maximum values of rooting percentage were recorded on Gelrite at 2g/l and agar10g/l.Results also revealed that, Gelrite at 4and 3g/l showed the highest average number of roots/shoot. The highest survival percentage was found by treatments of Agar at 6g/l or gelrite at 3g/l with Sakkuty. Concerning rooting, the highest rooting percentage were obtained at 45g/l sucrose with or without 1 g/l activated charcoal. Also the highest average number of root/shoot was found by treatment.45g/l with sakkouty with or without activated charcoal Meanwhile, the highest average root length with or without activated charcoal was recorded with Bartamodda.

The greatest of plantlet length (cm) during *in-vitro* rooting stage was found by treatments of PEG at 0.0 g/l and 5g/l with Sakkouty. Results also revealed that, PEG at 0.0 g/l showed the highest number of roots / shoot. On the

other hand, the highest survival percentages were recorded with treatments of PEG at 15 g/l with both cvs. than that of the control .The greatest plant length (cm) during acclimatization stage was found by treatment of PEG at 0.0 g/l with Sakkouty. Also the highest number of leaves/plant was found by PEG at 5.0g/l with Sakkuty than 20g/l with Bartamodda. Meanwhile, the highest average of root length (cm) was recorded with light intensity 3000 lux with Bartamodda. Plantlets length and number of root / shoot showed the highest values with 3000 lux with Bartamodda than that of 9000 lux with Sakkuty. Results indicated that plantlets spraying date palm during acclimatization with $0.5 \text{m} \frac{1}{1}$ antitranspiration agent (Stress relief 35) significantly increased plantlets length and leaf number but did not affect survival percentage. Most suitable planting medium for Sakkuty cv. consisted of (Vermiculite + Perlite + Peat moss (1:2:1 v/v) and the highest values of plant length were obtained with medium consisted of (Vermiculite + Perlite +Peat moss (1:1:1 v/v) with Sakkuty

Key words: Date Palm , Sakkuty , Bartamodda , Rooting,
Acclimatization Gelling agent, Activated charcoal, Poly
ethylene glycol, Antitranspiration agent , ,Murashige and
Skoog . Naphthalene Acetic Acid.

ACKNOWLEDGEMENT

Many thanks and praise be to great Allah most gracious who shined my way and supported me with patience and perseverance to fulfill this humble work.

I wish to express my deep gratitude to **Prof. Dr. Hassan Mohamed Fadel El Wakeel**, professor of pomology, Faculty of Agriculture, Ain Shams University for his supervision, guidance ,encouragement, valuable suggestion, endless advice and preparing of this manuscript during the whole work .

Great thanks are offered to **Dr.Ahmed Abd El-Hamid**. Associate professor of pomology, Faculty of Agriculture, Ain Shams University, for his help and supervision, continuous encouragement, valuable advice throughout this work.

I wish to express my appreciation and deep thanks to **Prof. Dr. Abdel Monem El-bana** Vice director of Agriculture Research Center . For his generosity and kind help in providing the needed facilities at tissue culture laboratory for date palm research and also my deep gratitude to all staff members who aided me a lot.

My sincere appreciation and deep thanks to **Dr. Mona Mohammad Hassan**. Central Laboratory for Date palm Research and Development. For her encouragement and their advices and great help in many ways and for efforts and supervision to fulfill this work.

My sincere appreciation and deep thanks to **Dr. Essam El-Din Abd El-Aziz Mohammad Osman**, Senior Researcher, Soils, Water and Environment Research Institute, A.R.C., For his help and supervision throughout this work.

Many thanks to **Dr. Saed Mohamed Khalil** associate Prof Agricultural Genetic Engineering Research Institute, Agric. Research center, Ministry of Agric. for his advices and great help in many ways

Finally my sincere thanks that I feel indebted to my family and my precious My Mother and my son "Mohamed".

CONTENTS

LIST OF TABLES	Pago IV
LIST OF PLATES	VII
LIST OF ABBREVIATIONS	IX
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
3. MATERIALS AND METHODS	12
4. RESULTS AND DISCUSSION	17
4.1. <i>In- vitro</i> rooting experiments	17
4.1.1. Effect of some gelling agents, date palm cvs. and	
their interaction on rooting percentage	17
4.1.2. Effect of some gelling agents, date palm cvs. and their	
interaction on average number of rootss/shoot	17
4.1. 3. Effect of some gelling agents, date palm cvs. and	
their interaction on average of root length (cm)	18
4.1. 4. Effect of some gelling agents, date palm cvs. and	
their interaction on survival percentage	18
4.1. 5. Effect of sucrose concentration, date palm cvs. With	
or without activated charcoal and their interaction on	
rooting percentage	19
4.1. 6. Effect of sucrose concentration, date palm cvs. with	
or without activated charcoal and their interaction on	
average number of roots/shoot	20
4.1. 7. Effect of sucrose concentration, date palm cvs. with	
or without activated charcoal and their interaction on	
average of root length(cm)	21
4.1 .8. Effect of sucrose concentration, date palm cvs. with	
or without activated charcoal and their interaction on	
survival percentage during acclimatization stage	21

4.1. 9. Effect of Poly Ethylene glycol (PEG) concentration,	
date palm cvs. and their interaction on plantlet length (cm)	
during in-vitro rooting stage	23
4.1.10. Effect of Poly Ethylene glycol (PEG) concentration,	
date palm cvs. and their interaction on number of	
roots/shoot(cm) during in- vitro rooting stage	24
4.1.11. Effect of Poly Ethylene glycol (PEG) concentration,	
date palm cvs. and their interaction on average of root	
length (cm) during in-vitro rooting stage	24
4.1.12. Effect of Poly Ethylene glycol (PEG)	
concentration, date palm cvs. and their interaction in	
rooting medium on survival percentage during	
acclimatization stage	24
4.1.13. Effect of Poly Ethylene glycol (PEG) concentration,	
date palm cvs. and their interaction in rooting medium on	
plant length (cm) during acclimatization stage	25
4.1.14. Effect of Poly Ethylene glycol (PEG) concentration,	
date palm cvs. and their interaction in rooting medium on	
number of leaves/plant during acclimatization stage	25
4.1.15. Effect of light intensity level, date palm cvs. and	
their interaction on average of root length (cm) during in-	
vitro rooting stage	26
4.1.16. Effect of light intensity levels, date palm cvs. and	
their interaction on plantlets length (cm) during in-vitro	
rooting stage	27
4.1.17. Effect of light intensity levels, date palm cvs. and	
their interaction on number of roots/shoot during in-vitro	
rooting stage	27
4.1.18. Effect of light intensity levels, date palm cvs. and	
their interaction on subsequent survival percentage during	
acclimatization stage	28

4.1.19. Effect of light intensity levels, date palm cvs. and	
their interaction on plant length (cm) during acclimatization	28
stage	
4.1.20. Effect of light intensity levels, date palm cvs. and	
their interaction on number of leaves per plant during	
acclimatization stage	28
4.2.1. Effect of anti-transpiration agent, date palm cvs. and	
their interaction on survival percentage during	
acclimatization stage	29
4.2.2. Effect of anti-transpiration agent, date palm cvs. and	
their interaction on plant length during	
acclimatization stage	29
4.2.3. Effect of anti-transpiration agent, date palm cvs. and	
their interaction on number of leaves/plant during	
acclimatization stage	30
4.2.4. Effect of out establishment media, date palm cvs. and	
their interaction on survival percentage	31
4.2.5. Effect of out establishment media, date palm cvs. and	
their interaction on number of leaves/plant	31
4.2.6. Effect of out establishment media, date palm cvs. and	
their interaction on plant length (cm)	31
5. SUMMARY AND CONCLUSION	67
6. REFERENCES	70
ARARIC SUMMARY	

LIST OF TABLES

No.		page
1.	Effect of some gelling agents, date palm cvs. and their interaction on <i>in-vitro</i> rooting percentage.	33
2.	Effect of some gelling agents, date palm cvs. and their interaction on <i>in-vitro</i> average number of roots.	34
3.	Effect of some gelling agents, date palm cvs. and their interaction on <i>in-vitro</i> on root length average	35
4.	(cm). Effect of some gelling agents, date palm cvs. and their interaction on <i>in-vitro</i> on survival percentage	
5.	during acclimatization stage. Effect of sucrose concentration, date palm cvs. with or without activated charcoal and their interaction	36
6.	on <i>in-vitro</i> rooting percentage. Effect of sucrose concentration, date palm cvs. with or without Activated charcoal and their interaction	37
7.	on <i>in-vitro</i> on average number of roots. Effect of sucrose concentration, date palm cvs. with or without Activated charcoal and their interaction	38
8.	on <i>in-vitro</i> root length average. Effect of sucrose concentration, date palm cvs. with or without activated charcoal and their interaction	40
9.	on survival percentage during acclimatization stage. Effect of Poly Ethylene Glycol concentration, date palm cvs. and their interaction on plantlets length	42
10.	(cm) during in-vitro rooting stage. Effect of Poly Ethylen Glycol (PEG) concentration, date palm cvs. and their interaction on number of	44
11.	root per shoot during <i>in-vitro</i> rooting stage. Effect of Poly Ethylen Glycol (PEG) concentration, date palm cvs and their interaction on average of	45
	root length (cm) during <i>in-vitro</i> rooting stage.	46

12.	Effect of Poly Ethylen Glycol(PEG) concentration,	
	date palm cvs. and their interaction in rooting	
	medium on survival percentage during	47
	acclimatization.	
13.	Effect of Poly Ethylen Glycol (PEG) concentration,	
	date palm cvs. and their interaction in rooting	
	medium on plant length(cm) during acclimatization	48
	stage.	
14.	Effect of Poly Ethylen Glycol (PEG) concentration,	
	date palm cvs. and their interaction in rooting	
	medium on number of leaves during acclimatization	49
	stage.	
15.	Effect of light intensity level, date palm cvs. and	
	their interaction on average of root length (cm)	
	during in-vitro rooting stage.	50
16.	Effect of light intensity level, date palm cvs. and	
	their interaction on plantlets length (cm) during in-	
	vitro rooting stage.	51
17.	Effect of light intensity level, date palm cvs. and	
	their interaction on number of root per shoot during	
	<i>in-vitro</i> rooting atage.	52
18.	Effect of light intensity level, date palm cvs. and	
	their interaction in rooting stage on survival	
4.0	percentage during acclimatization stage.	53
19.	Effect of light intensity level, date palm cvs. and	
	their interaction in rooting stage on plant length	
• 0	(cm) during acclimatization stage.	54
20.	Effect of light intensity level, date palm cvs. and	
	their interaction in rooting stage on number of	
0 1	leaves per plant during acclimatization stage.	55
21.	Effect of anti-transpiration agent spray	
	concentration, date palm cvs. and their interaction	

	on survival percentage during acclimatization stage.	56
22.	Effect of anti-transpiration agent spray	
	concentration, date palm evs. and their interaction	
	on plant length (cm) during acclimatization stage.	57
23.	Effect of anti-transpiration agent spray	
	concentration, date palm evs. and their interaction	
	on number of leaves per plant during acclimatization	58
	stage.	
24.	Effect of out establishment media, date palm cvs.	
	and their interaction on survival percentage.	59
25.	Effect of out establishment media, date palm evs.	
	and their interaction on number of leaves.	60
26.	Effect of out establishment media, date palm cvs.	
	and their interaction on plant length (cm)	61

LIST OF PLATES

No.	page	e
1	Plate(1).Rooted shoots of date palm cvs. Bartamodda and Sakkuty cultured on rooting media contained different concentration of agar (6,8and10g/l) and gelrite (2,3and4 g/l).	62
2.	Plate(2). Acclimatization of date palm cvs. Bartamodda and Sakkuty affected by different gelrite concentration (2,3and4g/l).	62
3.	Plat (3).Rooted shoots of date palm cvs. Bartamodda and Sakkouty cultured on rooting media contained different concentration of sucrose(30,45and60g/l) and activated charcoal (1g/l).	63
4.	Plate(4). Acclimatization of date palm cvs. Bartamodda and Sakkuty affected by different sucrose concentration (30, 45 and 60 g/l) and activated charcoal.	63
5.	Plate (5).Rooted shoots of date palm cvs. Bartamodda and Sakkouty cultured on rooting media contained different concentration of PEG (0.0,0.5, 10 and 20g/l)	64
6.	Plate (6). Acclimatization of date palm cvs Bartamodda and Sakkuty affected by different PEG concentration (0.0,0.5, 10and 20g/l).	64
7	Plate (7). Rooted shoots of date palm cvs. Bartamodda and Sakkouty cultured under different levels of light intensity (3000, 6000 and 9000 Lux) in rooting stage.	65

8	Plate (8). Acclimatization of date palm cvs. Bartamodda	
	and Sakkouty affected by different levels of light	
	intensity (3000, 6000 and 9000 Lux) previously in	
	rooting stage.	65
9	Plate (9). Acclimatization of date palm cvs. Bartamodda and Sakkouty affected by different antitranspiration concentration (0.0, 0.5, 1 and 2 ml/L)	66
10	Plate(10). Effect of out establishment media and date palm cvs. on leaf number.	66

LIST OF ABBREVIATION

AC Activated Charcoal

PEG Poly Ethylene Glycol

NAA Naphthalene Acetic Acid

MS Murashige and Skoog

SAKK Sakkuty

BART Bartamodda