CONTROL OF SEED METERING IN SOWING MACHINES

By

ADEL KHAZAL DABOUL

B. Sc. Agric. Sc. (Agric. Mechanization), Basrah University, Iraq, 1995M. Sc. Agric. Sc. (Agric. Mechanization), Basrah University, Iraq, 1998

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Agricultural Mechanization)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

CONTROL OF SEED METERING IN SOWING MACHINES

By

ADEL KHAZAL DABOUL

B. Sc. Agric. Sc. (Agric. Mechanization), Basrah University, Iraq, 1995 M. Sc. Agric. Sc. (Agric. Mechanization), Basrah University, Iraq, 1998

This thesis for Ph.D. degree has been approved by:
Dr. Mohamed Ahmed El-Sheikha
Prof. of Agricultural Engineering, Faculty of Agriculture, El Mansoura University
Dr. Abd El-Maksoud Mahrous El-Marakby
Prof. of Agronomy, Faculty of Agriculture, Ain Shams University
Dr. Mohamed Nabil El Awady
Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture Ain Shams University.
Date of Examination: / /2012

CONTROL OF SEED METERING IN SOWING MACHINES

By

ADEL KHAZAL DABOUL

B. Sc. Agric. Sc. (Agric. Mechanization), Basrah University, Iraq, 1995M. Sc. Agric. Sc. (Agric. Mechanization), Basrah University, Iraq, 1998

Under the supervision of:

Dr. Mohamed Nabil El Awady

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Metwally Abbas Hamada

Assist. Prof. of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Zaky El - Attar

Luct. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

التحكم في تلقيم البذور في آلات الزراعة

رسالة مقدمة من

عادل خزعل دعبول

بكالوريوس علوم زراعية (مكننة زراعية)، جامعة البصرة ، العراق ، 1995 ماجستير علوم زراعية (مكننة زراعية)، جامعة البصرة ، العراق ، 1998

للحصول على

درجة دكتور فلسفة في العلوم الزراعية (ميكنة زراعية)

قسم الهندسة الزراعية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة التحكم في تلقيم البذور في آلات الزراعة

رسالة مقدمة من

عادل خزعل دعبول

بكالوريوس علوم زراعية (مكننة زراعية)، جامعة البصرة ، العراق ، 1995 ماجستير علوم زراعية (مكننة زراعية)، جامعة البصرة ، العراق ، 1998

للحصول على درجة دكتور فلسفة في العلوم الزراعية (ميكنة زراعية)

وقد تم مناقشة الرسالة والموافقة عليها

اللجنة:

	د. محمد احمد الشيخة
بة المتفرغ، كلية الزراعة، جامعة المنصورة	أستاذ الهندسة الزراعي
ل المراكبي	د. عبد المقصود محروسر
ة الزراعة، جامعة عين شمس.	أستاذ المحاصيل ، كلي
	د. محمد نبيل العوضي
ة المتفرغ، كلية الزراعة، جامعة عين شمس	أستاذ الهندسة الزراعد

تاريخ المناقشة: // 2012

جامعة عين شمس

كلية الزراعة

رسالة دكتوراه

اسم الطالب : عادل خزعل دعبول

عنوان الرسالة : التحكم في تلقيم البذور في آلات الزراعة

اسم الدرجة : دكتور فلسفة في العلوم الزراعية (ميكنة زراعية)

لجنة الإشراف:

د. محمد نبيل العوضى

أستاذ الهندسة الزراعية المتفرغ، قسم الهندسة الزراعية، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي).

د متولی عباس حمادة

أستاذ المحاصيل المساعد، قسم المحاصيل ، كلية الزراعة، جامعة عين شمس.

د. محمود زكي العطار

مدرس الهندسة الزراعية، قسم الهندسة الزراعية، كلية الزراعة، جامعة عين شمس.

تاريخ التسجيل: 2007 /2/12

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ 2012 / /

موافقة مجلس الكلية موافقة مجلس الجامعة 2012 / / 2012

ABSTRACT

Adel Khazal Daboul: Control of Seed Metering in Sowing Machines. Unpublished Ph.D Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2012.

Construction and performance of seed mechanism for seed metering device, is based on the vibration for metering seeds has been done. It is adapted to minimize the seed damage and optimize seed rate and distribution

An eccentric - weight motor was used as a source of vibration for the metering device. This device was tested on a soil bin. Seven vibration frequencies were used: ranging from 4.27 to 19 H_Z and three seed level heights under the barrier (above the bottom of the hopper) from 1.5 to 4.5 cm and four opening gate dimensions (geometry groups), for two crosses of maize: Single cross 10 (S.C.10) and Double cross 162 (D.C.162) and two varieties of field bean (Giza 716 and Sakha 2).

The lowest values of static coefficient of friction were on galvanized iron followed by mild – steel, and the highest on plywood, and for the painted surfaces. The values of static coefficient of friction were: on oven - baked enamel paint < untreated (mild steel),< mutt paint < polish paint.

The results showed that the desired number of seeds/min for the mentioned crops could be obtained from feed rate settings for each variety individually. The results also showed that the vibration frequency 12.2 Hz and the seed level height under the barrier (1.5cm) had the comprehensible treatment for all the measurements.

Analysis of the performance tests of the vibration seed mechanism (seeds rate, seed spacing, germination and emergence) showed good results. The vibration seed mechanism attained the desired amount of the above mentioned factors from a wide range of combination treatments. There was no seed damage among the seeds.

The change in vibration frequency of the seed feed mechanism had a direct effect on seed discharge.

Keywords:

Seed metering device, Vibration frequency, Sowing machines, Planting equipment, Seed feed mechanism.

CONTENTS

Subject	Page
List of tables	iv
List of figures	Vi
List of abbreviations	ix
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	3
2-1- Physical and mechanical properties of seeds	3
2-1-1- Size and shape	3
2-1-2- Angle of repose	6
2-1-3- Static coefficient of friction	9
2-1-4- Dynamic coefficient of friction	11
2-1-5- Flow of seeds or grains through an orifice	13
2-2- Methods of sowing and mathematical treatment of distribution	14
2-2-1- Methods of sowing	14
2-2-2- Mathematical treatment of seed distribution	18
2-3- Design factors for sowing seeds	19
2-3-1- Seed box	19
2-3-2- Feeding mechanism	22
2-3-3- The performance of feeding mechanism	32
2-3-3-1- Feeding rate	32
2-3-3-2 Effect of feeding – shaft speed (ratio of rotation)	36
2-3-3-3- Effect of agitation	37
2-3-3-4- Effect of gate opening	37
2-3-3-5- Effect of seed size	37
2-3-4- Seed damage	38
2-3-5- Seed distribution	40
2-3-6- Effect of feeding device	43
2-3-7- Effect of seed tubes	45
2-4- Seed distribution performance of seed tubes	47

III- MATERIALS AND METHODS	49
3-1- Materials	49
3-1-1- Design of vibration seed feed mechanism	49
3-1-2- The soil bin	53
3-2- Measurements	55
3-2-1- Seed dimensions	55
3-2-2- Mass, volume of 1000 seeds, bulk and real densities and seed moisture content	56
3-2-3- Coefficient of friction and angle of repose	57
3-2-4- Rotating speed of the feeding mechanism:	59
3-2-5- Vibration frequency in the feeding mechanism	60
3-2-6- The seeding rate	60
3-2-7- The feeder vibration frequency	61
3-2-8- The gate opening dimensions (geometry group)	61
3-2-9- The seed damage, germination and emergence	62
3-2-10- The seed spacing	63
IV- RESULTS AND DISCUSSION	64
4-1- The major dimensions of the tested seeds	64
4-2- The mass and volume of 1000 seeds, bulk and real densities	67
4-3- The static coefficient of friction and angle of repose	68
4-4-The vibration frequency effect on static coefficient of friction	72
4-5- The seeding rate	75
4- 5-1-The effect of gate opening area (geometry group) on seeding rate	75
4- 5- 2- The effect of seed level on seeding rate	81
4- 5- 3- The effect of seed variety on seeding rate	82
4-6- The seed spacing	83
4-6-1- The effect of gate opening area (geometry) on seed spacing (cm)	83
4-6-2- The effect of seed level on seed spacing (cm)	84
4-6-3- The effect of seed variety on seed spacing (cm)	85
4-6-4- The effect of vibration frequency on seed spacing (cm)	86

4-7- The seed germination (%)	87
4-7-1- The effect of geometry group on seed germination	87
(%)	
4-7-2- The effect of seed level on seed germination (%)	88
4-7-3- The effect of seed variety on seed germination (%)	89
4-7-4- The effect of vibration frequency on seed germination (%)	90
4-8- The seed emergence (day)	91
4-8-1- The effect of geometry group on seed emergence (day)	91
4-8-2- The effect of seed level on seed emergence (day)	92
4-8-3- The effect of seed variety on seed emergence (day)	93
4-8-4- The effect of vibration frequency on seed emergence (day)	94
V- SUMMARY AND CONCLUSION	95
VI- REFERENCES	99
VII- APPENDIX	108
ARABIC SUMMARY	

LIST OF TABLES

Гable No.	Subject	Page
1	Size of graded Corn seeds	4
2	Computed volume and capacity of the seed hopper	53
3	The gate opening dimensions, area, and geometry groups for Single cross 10	108
4	The gate opening dimensions, area, and geometry groups for Double cross 162	108
5	The gate opening dimensions, area, and geometry groups for field bean Giza 716	109
6	The gate opening dimensions, area, and geometry groups for field bean Sakha2.	109
7	The variables affecting the seed discharge	62
8	The mass, volume, bulk and real densities of 1000 maize crosses	67
9	The mass, volume, bulk and real densities of 1000 field bean varieties	68
10	The effect of frequency group ($\frac{\text{freq } a^{1/2}}{g^{1/2}}$), geometrical	76
	groups (A/a^2) on seed rate group $(\frac{q}{g^{1/2} a^{5/2}})$ for	
	Single cross 10	
11	The effect of frequency group ($\frac{\text{freq } a^{1/2}}{g^{1/2}}$), geometrical	110
	groups (A/a²) on seed rate group ($\frac{q}{g^{1/2} a^{5/2}}$) for	
	Double cross162	

The effect of frequency group ($\frac{\text{freq a}^{1/2}}{\text{g}^{1/2}}$),geometrical	
groups (A/a²) on seed rate group ($\frac{q}{g^{1/2} \ a^{5/2}}$) for Giza	
716 variety	
The effect of frequency group ($\frac{\text{freq a}^{1/2}}{\text{g}^{1/2}}$),geometrical	113
groups (A/a²) on seed rate group ($\frac{q}{g^{1/2} a^{5/2}}$) for	
Sakha 2 variety	
14 Treatments that gave the suitable values of seed spacing	114
(20-29 cm) for maize crosses	
15 Treatments that gave the suitable values of seed spacing	115
(20-29 cm) for field bean varieties	
16 The effect of geometry group on seed germination	87
17 Treatments of maximum and minimum value of germination (%) for combination of maize crosses	115
18 Treatments of maximum and minimum value of germination (%) for combination of field bean varieties.	116
The effect of geometry group on seed emergence (day)	91
20 Treatments of slowest and fastest emergence (day) for combination of maize crosses.	117
21 Treatments of slowest and fastest emergence (day) for	118
combination of field bean varieties.	-
The recommended feed rate settings.	97

LIST OF FIGURES

Figure No.	Subject	Page
1	Tracing of shape and designation of three intercepts for seeds and	5
	grains obtained by photographic enlarger. (Mohsenin, 1986)	0
2	Angle of repose and angle of flow at various moisture contents. (RNAM, 1991).	8
3	Methods of sowing and planting,(Klenin et al., 1985)	16
4	Various types of surface profiles for row-crop planting. (Kepner et al., 1978)	18
5	Distance (a) between nearest seeds and "P" for drilling, R=inter row width. (Speelman, 1975)	19
6	Forms of the cross section of grain hoppers. (Bosoi et al., 1987)	21
7	Construction of the manual planter	22
8	Type of metering device used in seed drill. (RNAM, 1991)	25
9	(a)Stud-type roller metering mechanism. (RNAM, 1991)	26
	(b)Rotating orifice-type metering device in IRRI seeders suitable for paddy. (RNAM, 1991)	26
10	Sliding orifice plate metering device used in multi-crop seeders. (RNAM, 1991)	27
11	Exploding of a foam pad and throat-type metering device (RNAM, 1991)	28
12	Centrifugal-type rotary funnel metering device. (RNAM, 1991)	29
13	Position of seeds relative to the cells. (Klenin et al. 1985)	31
14	Release and import velocities. (Wilson, 1980).	33
15	Seeds delivery circular mechanism (wheel type). (Wilson, 1980)	33
16	Sketch of contemplated test-rig (Awady et al., 1998a)	43
17	Seed hopper with vibrating mechanism	49
18	Gate opening with a rectangular shape	49
19	The movement and volume of the seeds in the hopper	52

20	The soil bin and stepped pulley system	54
21 22	The 3 – major dimensions of the seeds The apparatus used to measure the static coefficient of friction	56 58
23	The speedometer used in the study	59
24	The vibrometer used in the study	60
25	The 3-Major dimensions of Single cross 10 and Double cross 162 seeds (cm)	64
26	The 3 - Major dimensions of Giza 716 and Sakha 2 seeds (cm)	66
27	The static coefficient of friction between maize seeds on different selected surfaces.	68
28	The static coefficient of friction between maize seeds on different treated surfaces	69
29	The static coefficient of friction between field bean seeds on different selected surfaces	70
30	The static coefficient of friction between field bean seeds on treated surfaces	71
31	The effect of vibration frequency on coefficient of friction for material surfaces and seed varieties.	73
32	The effect of vibration frequency on coefficient of friction for painted surfaces and seed varieties	74
33	$(\frac{q}{g^{1/2}\ a^{5/2}})\ \ \text{Vs.}\ (\ \frac{\text{freq}\ a^{1/2}}{g^{1/2}}\)\ \ \text{for different values of (A/a^2)}.$	77
	$(\frac{b}{a}, \frac{W}{a}, \frac{H}{a}, \frac{1}{a})$ are constants) for Single cross 10	, ,
34	$(\frac{q}{g^{1/2} a^{5/2}})$ Vs. $(\frac{\text{freq } a^{1/2}}{g^{1/2}})$ for different values of (A/a^2) .	70
	$(\frac{b}{a}, \frac{W}{a}, \frac{H}{a}, \frac{1}{a})$ are constants) for Double cross 162	78