

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Effect of Slab Thickness and Stirrup Shape on Shear Strength of Light Weight Concrete T – Beams

A Thesis
Submitted in partial fulfillment for the requirements of the Degree of

MASTER OF SCIENCE

In CIVIL ENGINEERING (STRUCTURES)

BY
Ahmed Kamar Eldawla Elshinawy
Structural Engineer

Supervised by

Assoc. Prof. Dr. Amr H. Zaher

Associate Professor, Structural Engineering Department, Faculty of Engineering - Ain Shams University

Dr. Wael Montaser

Assistant Professor, Structural Engineering Department, Faculty of Engineering-October 6 University

Dr. Marwan Shedid

Assistant Professor, Structural Engineering Department, Faculty of Engineering - Ain Shams University

Faculty of Engineering Ain Shams University Cairo-2015 **STATEMENT**

This thesis is submitted to Ain Shams University, Cairo, Egypt, on march

2015 for the degree of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author at reinforced

concrete unit lab in the facult of engineering in the Department of Civil Engineering

(Structural Division), Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at any

other University or Institute.

Date

: / / 2015

Name

: Ahmed Kamar Eldawla Elshinawy

Signature :

i

AIN SHAMS UNIVERSITY **FACULTY OF ENGINEERING**

APPROVAL SHEET

Thesis Student Name Thesis Title	 Master of Science in Civil Engineering Ahmed Kamar Eldawla Elshinawy Effect of Slab Thickness and Stirrup Staget Light Weight Concrete T – Beams. 	
Examiners Co	mmittee:	<u>Signature</u>
Professor of R.C.	ammed Talaat Moustafa Structures ering - Cairo University	
Professor of R.C.	an Hussein Hosny Khalil Structures ering - Ain Shams University	
Associate Profess	ein Abd-elazim Zaher or of R.C. Structures ering - Ain Shams University	
Date : / /20	015	

INFORMATION ABOUT THE RESEARCHER

Name: Ahmed Kamar Eldawla Elshinawy

Date of Birth: January 26th, 1985

Place of Birth: Algharbia, Egypt

Qualifications: B. Sc. Degree in civil Engineering (Structural Eng.) Faculty of

Engineering, October 6 University (2007)

Present Job: Teaching Assistant in Building and Construction Department, Faculty of

Engineering, October 6 University

Signature:

ACKNOWLGMENTS

First of all, I would like to thank God for every gift bestowed on me...

I would like to express my sincerest appreciation to my advisors, Assoc.Prof. Dr. Amr hussein zaher and Dr. Wael montaser and Dr. Marwan shedid for their guidance, continuous, valuable guidance, and the investments, giving me the opportunity to be involved in such interesting research.

I would like to thank the Concrete Research Laboratory staff, Ain Shames University for supporting me during my research. I would like to thank those who helped and improved the means of casting and testing the samples. I am also grateful to those unmentioned others for contributing in countless ways to my writing and being interested in my research. To all of those contributors, I am most grateful..

I believe that I have given my utmost effort in developing this research as accurately and truthfully as possible. Moreover, I am surely personally responsible for the conclusions and opinions expressed here.

Finally, I'd like to dedicate this work to my Father, Mother, Brothers, my Sister, my Uncle and my Family for their continuous encouragement, support and fruitful care.

Special thanks are given to **my Wife** for her encouragement, support and patience without which, I wouldn't have been able to continue my research and a very special thanks for my lovely sons Alia and Ali.

Ahmed Kamar Eldawla Elshinawy

Ain Shams University Faculty Of Engineering Structural Engineering Department

Abstract of the M.Sc. Thesis Submitted by:

Eng / Ahmed Kamar Eldawla Elshinawy

Title of the thesis

Effect of Slab Thickness and Stirrup Shape on Shear Strength of Light Weight Concrete T – Beams

ABSTRACT

This research work was conducted to study the general deformational behavior and shear resistance of light weight concrete T-beams under the effect of two concentrated loads. Ten full scale beams simply supported were tested, all specimens had length equal to 3000 mm and with cross-section of (100 x 300 mm.) and T-sections having width of slab 700 mm with varying slab thicknesses (40, 60 and 80 mm).

The T-beams represent three groups with different stirrups reinforcement. The beams were constructed without stirrups, with ordinary stirrups and with slab enclosed by stirrups reinforcement.

Each of first and second group consists of four T-beams with slab thicknesses (zero, 40, 60 and 80 mm), and the third group consists of two T-beams (60 and 80 mm.). The main reinforcement of all T-beams was kept constant and equal to 4 # 16 and the characteristic cubic strength for light weight -reinforced concrete was about 25 MPa.

The main variables of this study were the shape of section, slab thickness and shape of stirrups. The general deformational behavior of the tested beams was examined and reported (crack patterns, deformations, strain of concrete and steel).

Theoretical study used to predict the shear behavior of concrete beams and the results were compared with the results of the experimental study.

The results were combined with available information to formulate some recommendations for designers and researchers concerning the analysis, design and construction of light weight concrete elements. The observed behavior of the light weight concrete specimens up to failure greatly encourages the use of light weight concrete in structural elements.

TABLE OF CONTENTS

ACKNO	OWLEGMEN	NT	iv
ABSTR	ACT		v
TABLE	OF CONTE	NTS	vi
LIST O	F FIGURES		X
LIST O	F TABLES		xvii
_	TER 1: INTR		
1.1			
1.2	-	f The Study	
1.3	Scope And	l Contents	2
СНАРТ	FR 2. I ITF	RATURE REVIEW	
2.1		ckground	2
2.2		ghtweight Concrete	
2.2			
	2.1.1	No-Fines Concrete	
	2.1.2	Lightweight Aggregate Concrete	
2.2	2.2.3	Aerated Concrete	
2.3		s and Disadvantages of Lightweight Concrete	
2.4	•	nd Mechanical Properties of Structural Lightweight A	
	2.4.1	Compressive strength	
	2.4.2	Density of lightweight concrete	
	2.4.3	Specified-density concrete	
	2.4.4	Modulus of elasticity	
	2.4.5	Poisson's ratio	
	2.4.6	Creep	
	2.4.7	Drying shrinkage	
	2.4.8	Durability	18
	2.4.9	Slump	20
	2.4.10	Absorption	20
	2.4.11	Thermal expansion	21
	2.4.12	Fire endurance	21
	2.4.13	Crushing resistance.	23

2.5.	Mixing ar	nd Delivery Light Weight Concrete	24
2.6.	Placing L	ight Weight Concrete	25
2.7.	Pumping	Light Weight Concrete	25
2.8.	Economy	of Light Weight Concrete	27
2.9.	Materials	used in Producing Light Weight Concrete	28
	2.9.1	Aggregates	29
		2.9.1.1 Course Aggregate	29
		2.9.1.2 Fine Aggregate	30
	2.9.2	Cement	31
	2.9.3	Fly Ash	32
	2.9.4	Slag	32
	2.9.5	Silica fume	32
	2.9.6	Chemical admixtures	33
2.10	Basic She	ar Theories	34
	2.10.1	Homogeneous Beam	34
	2.10.2	Beam cracking modes	38
	2.10.3	Shear Transfer Mechanisms	39
	2.10.4	Shear Failure Modes	41
		2.10.4.1 Beam without Shear Reinforcement	41
		2.10.4.2 Beam with Shear Reinforcement	. 45
	2.10.5	Factors Affecting the Shear Strength	45
		2.10.5.1 Tensile Strength of Concrete	45
		2.10.5.2 Longitudinal Reinforcement	46
		2.10.5.3 Shear Span-to-Depth Ratio, a/d	46
		2.10.5.4 Size of Beam	47
		2.10.5.5 Axial Forces.	47
		2.10.5.6 Web Reinforcement.	48
	2.10.6	Effect of Stirrups on Concrete Behavior	48
	2.10.7	Effect of Flange Width on Concrete Behavior for T-Bear	ns 50
2.11	Light Wei	ght Concrete in Codes	53
	2.11.1 A	American Codes (American Concrete Institute)	53
	2.11.2 E	British Standards Specifications	54
	2.11.3 E	European Standards for Reinforced Concrete	54
	2.11.4 J	apanese Codes	54
	2.11.5 N	Norwegian Codes	55
2 12	Previous V	Work	55

CHAPTER 3: EXPERIMENTAL WORK 3.1 Introduction 65 3.2 Purpose Of The Study......65 3.3 3.4 Characteristics of Used Materials71 3.4.1 Aggregate.....71 3.4.2 Cement71 3.4.3 Water......72 3.4.4 Silica fume72 3.4.5 Super-Plasticizer72 3.4.6 Polystyrenes Foam73 3.4.7 Reinforcing Steel74 3.5 3.6 3.6.1 Mixing and Curing......78 3.6.2 Loading of Specimens.....82 3.7 **CHAPTER 4: ANALYSIS OF TEST RESULTS** 4.1 4.2 Experimental Results86 4.2.1 Modes of Failure.....86 4.2.1.1 Modes of failure for group G1......87 4.2.1.2 Modes of failure for group G2.....87 4.2.1.3 Modes of failure for group G3......87 4.2.2 Cracking Behavior......89 4.2.2.1 Cracking behavior for group G1......89 4.2.2.2 Cracking behavior for group G2......90 4.2.2.3 Cracking behavior for group G3......90 4.2.3 Deflection101 4.2.5 4.2.6 4.3

CHAP	TER 5: THEORETICAL ANALYSIS	
5.1	Introduction	163
5.2	Background on Strut and Tie Modeling	163
	5.2.1 Elements of a Strut-and-Tie Model	164
	5.2.1.1 Struts	165
	5.2.1.2 Ties	167
	5.2.1.3 Nodes	167
	5.2.2 Application Domain	168
5.3	Truss Model	169
	5.3.1 Shear-friction truss model	170
	5.3.2 Formation of the 45-degree truss model	172
	5.3.3 The variable -angle truss model	175
5.4	Beam Action and Arch Action	177
	5.4.1 Beam Action	180
	5.4.2 Arch Action	182
5.5	Strut-and-Tie Design in Codes	184
5.6	Analysis Procedure	185
5.7	Analysis Results	187
5.8	Comparison with Computer Software (CAST)	189
	5.8.1 Results	
CHAP	TER 6: SUMMRY AND CONCLUSIONS	
6.1	Summry	197
6.2	Conclusions.	199
9.3	Fields of Future Research Work	200

REFERENCES

LIST OF FIGURES

Chapter(2): LITERATURE REVIEW

Figure (2-1) No-fines Concrete	8
Figure (2-2) Lightweight Aggregate Concrete	9
Figure (2-3) Aerated Concrete	10
Figure (2-4) Concrete density versus time of drying for structural lightweigh (Holm 1994).	
Figure (2-5) Modulus of elasticity	14
Figure (2-6) Creep: normally cured concrete.	16
Figure (2-7) Creep: steam-cured concrete	16
Figure (2-8) Drying shrinkage: normally cured concrete	17
Figure (2-9) Drying shrinkage: steam-cured concrete	18
Figure (2-10) File endurance (heat transmission) of concrete slabs as a funct thickness for naturally dried specimens(Abrams and Gustaferro	
Figure (2-11) Fracture path of lightweight and normal weight aggregate	24
Figure (2-12) Internal forces in beam	35
Figure (2-13) Distribution of flexural shear stresses.	36
Figure (2-14) Principal stresses.	36
Figure (2-15) Stress Trajectories.	37
Figure (2-16) Potential crack pattern	38
Figure (2-17) A cracked beam without shear reinforcement	38
Figure (2-18) A cracked beam with shear reinforcement	39
Figure (2-19) Internal forces in cracked beam	40
Figure (2-20) Effect of a/d on shear for beams without reinforcement	43
Figure (2-21) Shear failure modes	44
Figure (2-22) Shear strength vs. longitudinal reinforcement	46
Figure (2-23) Shear strength vs. a/d	47
Figure (2-24) Distribution of internal shears of beam with shear reinforceme	nt48
Figure (2-25) Deformation of tension reinforcement after the diagonal tension	on crack
has extended to the level of the tension reinforcement	49
Chapter (3): EXPERIMENTAL WORK	
Figure (3-1) Typical dimensions and reinforcement of group G1	68
Figure (3-2) Typical dimensions and reinforcement of group G2	69
Figure (3-3) Typical dimensions and reinforcement of group G3	70

Figure (3-4) Course aggregates	/1
Figure (3-5) Fine Aggregates	71
Figure (3-6) Ordinary Portland cement	71
Figure (3-7) Silica fume	72
Figure (3-8) Super plasticizer (Viscocrete 20HE)	73
Figure (3-9) Polystyrenes foam	73
Figure (3-10) Reinforcing steel	74
Figure (3-11) Preparing of wooden form of the specimens	75
Figure (3-12) Preparing of steel mesh of the specimens	76
Figure (3-13) Placing of steel mesh in wooden form	77
Figure (3-14) Placing of electrical strain gauges in steel mesh	78
Figure (3-15) Mixing dry materials and water mechanically	80
Figure (3-16) Casting in the forms just after mixing	80
Figure (3-17) Smoothing the final concrete surface	81
Figure (3-18) Position of electrical strain gauges mounted on the main rei	nforcement
Of specimen G1	83
Figure (3-19) Position of electrical strain gauges mounted on the main rei	nforcement
Of specimen G2 and G3	83
Figure (3-20) Position of used demec points and LVDT	84
Figure (3-21) Test setup	85
Chapter (4): ANALYSIS OF TEST RESULTS	
Figure (4-1) Crack pattern and the failure of specimen G1B1	92
Figure (4-2) Crack pattern of specimen G1B2	92
Figure (4-3) The failure in specimen G1B2	93
Figure (4-4) Crack pattern in specimen G1B3	93
Figure (4-5) The failure in specimen G1B3	94
Figure (4-6) Crack pattern of specimen G1B4	94
Figure (4-7) The failure in specimen G1B4	95
Figure (4-8) The failure in specimen G2B1	95
Figure (4-9) Crack pattern of specimen G2B2	96
Figure (4-10) The failure in specimen G2B2	96
Figure (4-11) Crack pattern of specimen G2B3	97
Figure (4-12) The failure in specimen G2B3	97
Figure (4-13) Crack pattern of specimen G2B4	98
Figure (4-14) The failure in specimen G2B4	98

Figure (4-15) Crack pattern of specimen G3B1	99
Figure (4-16) The failure in specimen G3B1	99
Figure (4-17) Crack pattern of specimen G3B2	100
Figure (4-18) The failure in specimen G3B2	100
Figure (4-19) Profile of deflection curves of G1B1	103
Figure (4-20) Profile of deflection curves of G1B2	103
Figure (4-21) Profile of deflection curves of G1B3	104
Figure (4-22) Profile of deflection curves of G1B4	104
Figure (4-23) Profile of deflection curves of G2B1	105
Figure (4-24) Profile of deflection curves of G2B2	105
Figure (4-25) Profile of deflection curves of G2B3	106
Figure (4-26) Profile of deflection curves of G2B4	106
Figure (4-27) Profile of deflection curves of G3B1	107
Figure (4-28) Profile of deflection curves of G3B2	107
Figure (4-29) Load – Deflection Curve of Specimen G1B1	. 108
Figure (4-30) Load – Deflection Curve of Specimen G1B2	108
Figure (4-31) Load – Deflection Curve at Slab Corner of Specimen G1B2	109
Figure (4-32) Load – Deflection Curve of Specimen G1B3	109
Figure (4-33) Load – Deflection Curve at Slab Corner of Specimen G1B3	110
Figure (4-34) Load – Deflection Curve of Specimen G1B4	110
Figure (4-35) Load – Deflection Curve at Slab Corner of Specimen G1B4	111
Figure (4-36) Load – Deflection Curve of Specimen G2B1	.111
Figure (4-37) Load – Deflection Curve of Specimen G2B2	112
Figure (4-38) Load – Deflection Curve at Slab Corner of Specimen G2B2	112
Figure (4-39) Load – Deflection Curve of Specimen G2B3	113
Figure (4-40) Load – Deflection Curve at Slab Corner of Specimen G2B3	113
Figure (4-41) Load – Deflection Curve of Specimen G2B4	114
Figure (4-42) Load – Deflection Curve at Slab Corner of Specimen G2B4	114
Figure (4-43) Load – Deflection Curve of Specimen G2B4	115
Figure (4-44) Load – Deflection Curve at Slab Corner of Specimen G2B4	115
Figure (4-45) Load – Deflection Curve of Specimen G2B4	116
Figure (4-46) Load – Deflection Curve at Slab Corner of Specimen G2B4	116
Figure (4-47) Load – Deflection Curves of Specimens G1B1,G1B2,G1B3 and G	
Ti (4.40) X	
Figure (4-48) Load – Deflection Curves of Specimens G2B1,G2B2,G2B3 and C	
Figure (4-49) Load – Deflection Curves of Specimens G3B1 and G3B2	

Figure (4-50) Load – Deflection Curves of Specimens G1B1 and G2B1118
Figure (4-51) Load – Deflection Curves of Specimens G1B2 and G2B2119
Figure~(4-52)~Load-Deflection~Curves~of~Specimens~G1B3, G2B3~and~G3B1119
Figure~(4-53)~Load-Deflection~Curves~of~Specimens~G1B4, G2B4~and~G3B2120
Figure (4-54) Load – Crack Width Curve of Specimen G1B1
Figure (4-55) Load – Crack Width Curve of Specimen G1B2
Figure (4-56) Load – Crack Width Curve of Specimen G1B3
Figure (4-57) Load – Crack Width Curve of Specimen G1B4
Figure (4-58) Load – Crack Width Curve of Specimen G2B1
Figure (4-59) Load – Crack Width Curve of Specimen G2B2
Figure (4-60) Load – Crack Width Curve of Specimen G2B3
Figure (4-61) Load – Crack Width Curve of Specimen G2B4
Figure (4-62) Load – Crack Width Curve of Specimen G3B1
Figure (4-63) Load – Crack Width Curve of Specimen G3B2
Figure (4-64) Load – Crack Width Curve of Specimens G1B1,G1B2,G1B3 and G1B4
Figure (4-65) Load – Crack Width Curve of Specimens G2B1,G2B2,G2B3 and G2B4
Figure (4-66) Load – Crack Width Curve of Specimens G3B1 and G3B2129
Figure (4-67) Load – Crack Width Curve of Specimens G1B1 and G2B1129
Figure (4-68) Load – Crack Width Curve of Specimens G1B2 and G2B2130
Figure (4-69) Load – Crack Width Curve of Specimens G1B3,G2B3 and G3B1130
Figure (4-70) Load – Crack Width Curve of Specimens G1B4,G2B4 and G3B2131
Figure (4-71) Load – Steel strain Curve in Stirrup of Specimen G1B1134
Figure (4-72) Load – Steel strain Curve in Longitudinal Rft of Specimen G1B1 134
Figure (4-73) Load – Steel strain Curve in Stirrup of Specimen G1B2135
Figure (4-74) Load – Steel strain Curve in Longitudinal Rft of Specimen G1B2 135
Figure (4-75) Load – Steel strain Curve in Stirrup of Specimen G1B3136
Figure (4-76) Load – Steel strain Curve in Longitudinal Rft of Specimen G1B3 136
Figure (4-77) Load – Steel strain Curve in Stirrup of Specimen G1B4137
Figure (4-78) Load – Steel strain Curve in longitudinal Rft of Specimen G1B4 137
Figure (4-79) Load – Steel strain Curve in Stirrup of Specimen G2B1138
Figure (4-80) Load – Steel strain Curve in longitudinal Rft. of Specimen G2B1138
Figure (4-81) Load – Steel strain Curve in Stirrup of Specimen G2B2139
Figure (4-82) Load – Steel strain Curve in longitudinal Rft. of Specimen G2B2139
Figure (4-83) Load – Steel strain Curve in Stirrup of Specimen G2B3140
Figure (4-84) Load – Steel strain Curve in longitudinal Rft. of Specimen G2B3140

Figure (4-85) Load – Steel strain Curve in Stirrup of Specimen G2B4141
Figure (4-86) Load – Steel strain Curve in longitudinal Rft. of Specimen G2B4 141
Figure (4-87) Load – Steel strain Curve in Stirrup of Specimen G3B1142
Figure (4-88) Load – Steel strain Curve in Longitudinal Rft of Specimen G3B1 142
Figure (4-89) Load – Steel strain Curve in Stirrup of Specimen G3B2143
Figure (4-90) Load – Steel strain Curve in Longitudinal Rft of Specimen G3B2 143
Figure (4-91) Load – Steel strain Curves in Stirrup of Specimens G2B2,G2B3 and G2B4
Figure (4-92) Load - Steel strain Curves in Stirrup of Specimens G3B1 and G3B2144
Figure (4-93) Load – Steel strain Curves in Stirrup of Specimens G2B3 and G3B1145
Figure (4-94) Load – Steel strain Curves in Stirrup of Specimens G2B4 and G3B2145
Figure (4-95) Load – Steel strain Curve in Longitudinal Rft of Specimens G1B2,G1B3 and G1B4
Figure (4-96) Load – Steel strain Curve in Longitudinal Rft of Specimens G2B2,G2B3 and G2B4
Figure (4-97) Load – Steel strain Curve in Longitudinal Rft of Specimens G3B1 and G3B2
Figure (4-98) Load – Steel strain Curve in Longitudinal Rft of Specimens G1B3,G2B3 and G3B1
Figure (4-99) Load – Steel strain Curve in Longitudinal Rft of Specimens G1B4,G2B4 and G3B2
Figure (4-100) Load – Concrete strain Curve of Specimen G1B1
Figure (4-101) Load – Concrete strain Curve of Specimen G1B2
Figure (4-102) Load – Concrete strain Curve of Specimen G1B3
Figure (4-103) Load – Concrete strain Curve of Specimen G1B4
Figure (4-104) Load – Concrete strain Curve of Specimen G2B1
Figure (4-105) Load – Concrete strain Curve of Specimen G2B2
Figure (4-106) Load – Concrete strain Curve of Specimen G2B3
Figure (4-107) Load – Concrete strain Curve of Specimen G2B4
Figure (4-108) Load – Concrete strain Curve of Specimen G3B1
Figure (4-109) Load – Concrete strain Curve of Specimen G3B2
Figure (4-110) Load – Concrete strain Curves of Specimens G1B1,G1B2,G1B3 and G1B4
Figure (4-111) Load – Concrete strain Curves of Specimens G2B1,G2B2,G2B3 and G2B4
Figure (4-112) Load – Concrete strain Curves of Specimens G3B1 and G3B2157
Figure (4-113) Load – Concrete strain Curves of Specimens G1B1 and G2B1 157
Figure (4-114) Load – Concrete strain Curves of Specimens G1B2 and G2B2 158