Role of MRI in evaluation of Cardiomyopathy

Protocol of an essay submitted for partial fulfillment

Of master degree in radio diagnosis

By

Khaled Ahmed Galal El-Din Mousa

M.B.B.CH

Under supervision of

Prof. Dr. Hanan Eisaa

Professor of radio diagnosis
Faculty of medicine, Ain Shams University

.Dr. Ahmed Fathi

Assistant Professor of radio diagnosis
Faculty of medicine, Ain Shams University

Faculty of medicine

Ain shams university

2012

Acknowledgment

First and foremost, I fell always indebted to **Allah**, the most kind and the most merciful.

I would like to express my gratitude to my father and my mother and special thanks to my wife who inspires me

I would like to express my gratitude to **Prof. Dr. Hanan Mohamed Eissa,** Professor of Radio-diagnosis, Faculty

of Medicine, Ain Shams University, for her most

valuable advises and support all through the whole

work.

I am also grateful to **Doctor/ Ahmed Fathy**, Ass.prof of Radio-diagnosis, Faculty of Medicine, Ain Shams
University for his continuous encouragement,
supervision and kindness.

Table of contents

Table of contents

List of figures	i
List of abbreviations	vii
Introduction	1
Aim of the work	3
Chapter (1): Anatomy of the heart	4
Chapter (2): Pathology of cardiomyopathy	26
Chapter (3): Technique of cardiac MRI	55
Chapter (4): MRI findings in cardiomyopathy	97
Summary & Conclusion	135
References	137
Arabic Summary	152

List of Figures

	Page No.
Fig.(1):	General over view of the heart
Fig. (2):	Right atrium Error! Bookmark not defined.
Fig. (3):	Left atrium and its relations Error! Bookmark not defi
Fig. (4):	Left and Right atrial appendage11
Fig. (5):	Left atrium at end of diastole and end of systole 12
Fig. (6):	Atrial (intraatrial) septum
Fig. (7):	Components of the right ventricle
Fig. (8):	Moderator band and Infundibulum
Fig. (9):	Components of the left ventricle
Fig. (10):	Left ventricular papillary muscles
Fig. (11):	Essential characteristics of the morphologically right and left ventricle
Fig. (12):	Tricuspid and mitral valves20
Fig. (13):	Aortic valve cusps in closed and open condition 21
Fig. (14):	Origin and proximal course of coronary arteries 22
Fig. (15):	Pericardial sinuses. 23
Fig. (16):	Superior pericardial recess
Fig. (17):	Normal pericardium (aortopulmonary recess)24
Fig. (18):	Enalrged left ventricle and atrium
Fig. (19):	Dilated heart
Fig. (20):	Heart with thickened muscle
Fig. (21):	Restrictive cardiomyopathy42

List of figur	res
Fig. (22):	Endomyocardial biopsy in cardiac amyliodosis 50
Fig (23):	Myocardial granuloma
Fig. (24):	Example of a 6-element phased-array cardiac surface coil
Fig. (25):	A Coronal scout image in a patient where the coil placement is too low on the body
Fig. (26):	Typical setup of vectorcardiogram (VCG) system with four skin electrodes
Fig. (27):	Example of MR-compatible monitoring unit
Fig. (28):	Comparison of retrospective cine MRI and real-time ungated cine MRI
Fig. (29):	T1- and T2-weighted techniques TSE image with fat suppression acquired in a patient with acute myocardial infarction
Fig. (30):	Gradient-echo cine MR image in cardiac short-axis68
Fig. (31):	Balanced steady-state free precession (b-SSFP) cine MR image in cardiac short-axis
Fig. (32):	CE-IR-MRI, spectral fat suppression is used to suppress the signal of chest wall and pericardial tissue to increase contrast between the myocardium and surrounding fat
Fig. (33):	Short-axis perfusion MR images acquired during injection of contrast agent
Fig. (34):	Example of black-blood T1-weighted TSE MRI 73
Fig. (35):	CE-IR MRI, cardiac short–axis and vertical long–axis acquired 25 min after contrast injection
Fig. (36):	Short axis plane "Bright blood "
Fig. (37):	ARVD "balck blood" single shoot fast spin echo 77
Fig. (38):	Myocardial perfusion: magnetization-prepared gradient echo

List of figures Fig. (41): Horizontal long axis SSFP known as 4 chamber view......81 Fig. (42): Vertical long axis SSFP known as 2 chamber view....81 **Fig. (43):** Sagittal single shot fast spin echo.......82 **Fig. (45):** Four chamber gradient echo......83 Fig. (46): Coronal single shot fast spin echo......83 Fig. (47): Left ventricual outflow view.......84 **Fig. (48):** Three chamber view......84 Fig. (49): Cardiac axis imaging planes for the left ventricle; images acquired using a balanced steady-state free Alignment of SA stack for analysis of ventricular Fig. (50): Imaging planes that can be aligned from the basal SA Fig. (51): Fig. (53): Alignment of the tricuspid valve plane90 Fig. (54): Alignment of the pulmonary valve plane91 Fig. (55): Alignment of the RV inflow/outflow view using a 3-Fig. (56): point plane92 Fig. (57): Low spatial- and temporal- resolution real-time 93 Fig. (58): Division of the LV into basal, mid-cavity, and apical SA segments for subsequent segment numbering...... 94

List of figures	
Fig. (60):	Bull's-eye plot representation of all segments of the left ventricle
Fig. (61):	Correlation between the most common coronary artery distribution pattern and the seven segments of the left ventricle
Fig. (62):	Extreme form of hypertrophic, obstructive cardiomyopathy in a young male teenager
Fig. (63):	Asymmetric septal hypertrophic cardiomyopathy with complete occlusion of the LVOT in a 69-year-old woman
Fig. (64):	Midventricular type of hypertrophic (obstructive) cardiomyopathy in a 55-years old woman
Fig. (65):	"Venturi" effect in hypertrophic (obstructive) cardiomyopathy
Fig. (66):	Apical form of hypertrophic cardiomyopathy in a 70-year-old woman presenting with negative Ts in anterior leads on ECG
Fig. (67):	Left ventricle long axis view demostrate aneurismal dilatation of LV105
Fig. (68):	40- years old man, hypertrophic cardiomyopathy107
Fig. (69):	Asymmetric septal hypertrophic cardiomyopathy in a 50-year-old man
Fig. (70):	Typical late myocardial enhancement pattern in asymmetric septal hypertrophic cardiomyopathy 109
Fig. (71):	Asymmetric septal hypertrophic obstructive cardiomyopathy in a 54-year-old woman treated with alcoholization of the first septal perforator coronary artery to reduce LV outflow tract obstruction
Fig. (72):	Idiopathic dilated cardiomyopathy in a 53-year-old man

List of figures	
Fig. (73):	50- years old man with known coronary artery disease and two prior anterior myocardial infarction113
Fig. (74):	CE-IR MRI with late imaging in 59-year-old male patient with idiopathic dilated cardiomyopathy 114
Fig. (75):	DCM with patchy foci of midwall enhancement
Fig. (76):	Idiopathic restrictive cardiomyopathy in a 73-year-old woman presenting with increased filling pressures . 117
Fig. (77):	Typical flow curves in a patient with restrictive cardiomyopathy, using the velocity-encoded cine MRI technique
Fig. (78):	Ventricular septal motion in a patient with restrictive cardiomyopathy
Fig. (79):	Abnormal respiratory variation of ventricular septal shape and motion in a patient with constrictive pericarditis ("pathologic ventricular coupling") 120
Fig. (80):	Arrhythmogenic right ventricualr dysplasia in a 53 years old man
Fig. (81):	Arrhythmogenic right ventricualr dysplasia in a 56 years old man axial cine MRI
Fig. (82):	Heavy fatty infiltration and thickening of RV free wall in female patient with arrhythmogenic right ventricular dysplasia
Fig. (83):	Severe RV dilation and dysfunction in a patient with arrhythmogenic right ventricular dysplasia125
Fig. (84):	End-stage arrhythmogenic right ventricular dysplasia with severe right ventricular and atrial enlargement. Axial cine MRI, using the b-SSFP technique, at three

List	of figures

Fig. (85):	Arrhythmogenic right ventricular dysplasia Axial, T1-weighted fast SE-MRI obtained with the patient in
	prone position
Fig. (86):	Cardiac amyloidosis in a 67-year-old man 128
Fig. (87):	Cardiac amyloidosis in a 67-year-old man 129
Fig. (88):	Myocardial confluent granulomas from multiple organ sarcoidosis in 37-year-old woman with atrioventricular block
Fig. (89):	Acute myocardial inflammation due to multiple organ sarcoidosis in 37-year-old man131
Fig. (90):	Post inflammatory pattern is seen on follow-up MR image obtained 6 months after initiation of steroid therapy in 31-year-old man
Fig. (91):	Cardiac sarcoidosis in a 48-year-old man. CE-IR MRI with late imaging in the axial plane133

List of abbreviations

4ch : Four chambersAO : Ascending aorta

ARVD : Arrhythmogenic right ventricular dysplasia

AV node : Atrioventricular node **b-FFE** : Balanced Fast-Field Echo

b-SSFP: Balanced steady state free precession **CE-IR**: Contrast enhanced inversion recovery

CMPs : CardiomyopathiesCt : Crista terminals

DCM : Dilated cardiomyopathy **EPI** : Echo planar imaging

FIESTA: Fast Imaging Employing Steady-state Acquisition

FSE : Fast spin echo **Gd-DTPA** : Gadolinium DTPA

GE : Gradient echo

GRE.EPI: Gradient echo-echo planar imaging

HASTE : Half-Fourier Acquired Single-shot Turbo spin

Echo

HCM : Hypertrophic cardiomyopathy

HLA : Horizontal long axisIR : Inversion recovery

LA : Left atrium

LAAP : Left atrial appendage

LAD : Left anterior descending coronary artery

LCC : Left coronal cusps

Lcx : Left Circumflex coronary artery

LMS : Left main stem

LPA : Left pulmonary artery

LV : Left ventricle

LVOT : Left ventricle outflow tract
MRI : Magnetic resonance imaging

NCC : Non-coronal cusps

List of abbreviations

NSSR : Non-surgical septal reduction

PA : Pulmonary artery
PCA : Right coronary artery

PTSMA : Percutaneous transluminal septal myocardial

ablation

PRESTO: Precoding inversion recovery

RAAP : Right atrial appendage
 RBC : Red blood corpuscles
 RCC : Right coronal cusps
 RF : Radiofrequency

RPA: Right pulmonary artery

RV : Right ventricle

RVOT : Right ventricle outflow tract

SA : Short axis

SEMRI : Spin-echo MRI

SENSE : Sensitivity encoding SNR : Signal to noise ratio

Fast SPGR: Spoiled Grass Gradient Recall Acquisition

SR: Saturation recovery
STIR: Short tau inversion

SS-FSE : single shot fast spin echo

SVC : Superior vena cava
TFE : Turbo Field Echo
TI : Time of inversion
TOF : Time of flight

True FISP: True Fast Imaging with Steady-state Precession

TR: Time of recovery
TSR: Turbo spin echo

TurboFLASH: Fast imaging using Low Angle Shot

VCG : Vector cardiography

VLA : Vertical long axis

Introduction and Aim of the Work

Introduction

Cardiomyopathies (CMPs) are myocardial diseases associated with cardiac dysfunction. They are classified as dilated CMP, hypertrophic CMP, restrictive CMP, arrhythmogenic right ventricular (RV) CMP, specific CMP, and nonclassified CMP. (*Richardson et al.*, 1996).

Cardiac MRI has become an important imaging technique for the diagnosis and follow-up of CMP. In fact, echocardiography, usually the first step in CMP evaluation, has some pitfalls, mainly its limited acoustic window. On the contrary, cardiac MRI allows a reproducible and accurate evaluation of myocardial morphology, function, perfusion, and tissue damage in a noninvasive and "onestop shop" way. For these reasons, cardiac MRI has become an important diagnostic tool for CMP and is the new reference standard for the assessment of cardiac function. (*Belloni et al.*, 2008).

Examples of the use of cardiac MRI are the pre- and posttherapy evaluation of hypertrophic and dilated CMPs, the differential diagnosis between restrictive CMP and constrictive pericarditis, the assessment of myocardial damage in acute and chronic CMP, and the evaluation of myocardial involvement in

Introduction

systemic diseases such as amyloidosis and sarcoidosis. (Papavassiliu et al., 2009), (Assomull et al., 2006), (Kwong and Falk, 2005), (Moon et al., 2004).

Several MRI sequences have been used including morphologic fast spin-echo black blood sequences with and without fat suppression, cine single-shot free-precession sequences, phase contrast sequences, and late T1-weighted fast-field echo inversion recovery sequences.

Function evaluation is implemented on the cine short-axis images, encompassing the left ventricle and right ventricle from base to apex to obtain a volumetric evaluation using a dedicated workstation. (*Belloni et al.*, 2008).

Cine imaging is important in the evaluation of cardiac volumes and kinesis and is now considered the reference standard for the assessment of cardiac function. Transvalvular flow can be studied by means of phase-contrast sequences. Late-enhancement imaging is performed after the IV administration of gadolinium and is fundamental in the characterization of myocardial tissue abnormalities in CMP. (*Reichek and Gupta*, 2008).