Relation between Carotid Intima Media Thickness and Oxidative Stress in Type I Diabetic Children and Adolescents

Chesis

Submitted for partial Fulfillment of Master Degree in Pediatrics

By Nermeen Ahmed Kamal Abd Allah

M.B. BCh. – 2006 Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Mona Hussein El Samahy

Professor of Pediatrics Faculty of Medicine -Ain Shams University

Prof. Dr. Randa Mahmoud Asaad Sayed Matter

Professor of Pediatrics Faculty of Medicine -Ain Shams University

Dr. Omneya Ibrahim Youssef

Lecturer of Pediatrics Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2012

Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Diabetes Mellitus	5
Cardiovascular Complications of Diabetes Mellitus type 1	34
Carotid Intima Media Thickness	39
Oxidative Stress & Antioxidants	47
Nitric Oxide	55
Total Antioxidant Capacity (TAC)	61
Patients and Methods	69
Results	76
Discussion	99
Summary	118
Conclusions	122
Recommendations	123
References	124
Arabic Summary	

List of Abbreviations

ACEIs : Angiotensin converting enzyme inhibitors

ADP : Adenosine diphosphate

AGE : Advanced glycosylation end products

AR : Aldose reductase

ARBs : Angiotensin receptor blockers

ATRA : All-trans retinoic acid

BG : Blood glucose

BMI : Body mass index (BMI)

CAC : Coronary artery calcification

CCA : Common carotid artery

CETP : Cholesterol ester transfer protein

CHD : Coronary heart disease

cIMT : Carotid intima-media thickness

CSII : Continuous subcutaneous insulin infusion

CT : Computed tomography

CVD : Cardiovascular disease

DCCT: Diabetes control and complications trial

DCCT/EDIC: Diabetes Control and Complications

Trial/Epidemiology of Diabetes Interventions and

Complications

DKA : Diabetic keto-acidosis

DM : Diabetes mellitus

ECM : Extracellular matrix

EDNO : Endothelium derived nitric oxide

EDRF : Endothelium derived relaxing factor

eNOS : Endothelial nitric oxide synthase

ESRD : End-stage renal disease

GD : Gestational diabetes mellitus

GMP : Guanosine monophosphate

HBP : Hexosamine biosynthesis pathway

HNF : Hepatocyte nuclear factor

 $\mathbf{H_2O_2}$: Hydrogen peroxide

ICA : Internal carotid artery

IDDM : Insulin-dependent diabetes mellitus'

IMT : Intima media thickness

LADA : Latent autoimmune diabetes of the adult

MODY : maturity-onset diabetes of the young

NAC : N-Acetyl-Cysteine

NADPH : Nicotinamide adenine dinucleotide phosphate

NO : Nitric oxide

PKC :Protien kinase C

RAGE : Receptor for advanced glycation end products

ROS : Reactive Oxygen Species

RNC : Reactive Nitrogen Species

SDH : Sorbitol dehdrogenase

SDS : Standard deviation score

SMBG : Self-monitoring of blood glucose

S1P :Sphingosine 1 phosphate

T1DM : Type 1 diabetes mellitus

TAC : Total Antioxidant Capacity

Th : T helper cell

tHcy : Total homocysteine

TG : Triglycerides

UDP-GlcNAc : UDP-Nacetylglucosamine

VSMC : Vascular smooth muscle cell

List of Tables

Cable	No. Citle	Page No.
Table (1):	Etiologic classification of diabetes mel	litus5
Table (2):	Complications of type 1diabetes	14
Table (3):	Types of insulin currently available.	22
Table (4):	Blood Glucose Goals for Pediatrics	31
Table (5):	Main Reactive Oxygen Species (R Superior Organisms	
Table (6):	Common Physiological Antioxida Human Fluids	
Table (7):	Total Antioxidant Capacity values in (μmol Trolox-Equivalent/100g or 10	
Table (8):	Descriptive data of studied diabetic p	patients76
Table (9):	Demographic characteristics of patie control groups	
Table (10):	Distribution of compliance in patients.	
Table (11):	Distribution of the number of ketoacidosis attacks in studied pat the year of study	ients in
Table (12):	Distribution of the presence or abs	
Table (13):	Distribution of systolic blood percentile in studied patients	
Table (14):	Distribution of diastolic blood percentile in studied patients	-
Table (15):	Comparison between studied patie control group regarding gender	

Table (16):	Comparison between studied patients and control group regarding age, weight, weight for age standard deviation score, height, height for age SDS and body mass index	80
Table (17):	Comparison between studied patients and control group regarding weight percentile	81
Table (18):	Comparison between studied patients and control group regarding height percentile	82
Table (19):	Comparison between studied patients and control group regarding body mass index percentile.	83
Table (20):	Comparison between studied patients and control group regarding serum cholesterol, serum triglycerides, nitric oxide level, total antioxidant capacity level and carotid intima media thickness	84
Table (21):	Comparison between patients with diabetes duration <5 years and >5 years regarding age, insulin dose (short acting and long acting), weight, weight for age SDS, height, height for age SDS body mass index, systolic blood pressure, diastolic blood pressure	85
Table (22):	Comparison between patients with diabetes duration <5 years and >5 years regarding mean HbA ₁ c, serum cholesterol, serum triglycerides, nitric oxide level, total antioxidant capacity level and carotid intima media thickness.	87
Table (23):	Comparison between male and female diabetic patients regarding nitric oxide level, total antioxidant capacity level and carotid intima media thickness	88
Table (24):	Comparison between well controlled and poorly controlled diabetic patients regarding studied parameters.	89

Table (25):	Comparison between diabetic patients with and without nephropathy regarding studied parameters	90
Table (26):	Correlation between cIMT, plasma NO and plasma TAC in diabetic patients	91
Table (27):	Correlation between nitric oxide level in diabetic patients and different studied parameters.	92
Table (28):	Correlation between total antioxidant capacity level in diabetic patients and different studied parameters.	93
Table (29):	Correlation between carotid intima media thickness in diabetic patients and different studied parameters.	94

List of Figures

Figures N	o. Citle	Page No.
Figure (1):	Insulin delivery devices	22
Figure (2):	How Islet Cell Transplant surgery works .	24
Figure (3):	The artificial pancreas	25
Figure (4):	The Exubera inhaler	27
Figure (5):	Insulin pump	29
Figure (6):	Phenotype composition of atherosclero plaques in asymptomatic type 1 (T1D) and type 2 (T2DM) diabetic patients	M)
Figure (7):	Schematic showing the anatomy and sites intima-media arterial wall thickneevaluation in the carotid system	of ess
Figure (8):	Current working model for the generation reactive species and downstream targets diabetes	in
Figure (9):	Pathophysiology and prevention of To Antioxidant Capacity decay	
Figure (10):	Comparison between studied diabetic patie and control group regarding gender	
Figure (11):	Comparison between studied diaber patients and control group regarding weign percentile.	ght
Figure (12):	Comparison between studied diabet patients and control group regarding heignercentile.	tic ght
Figure (13):	Comparison between studied diabet patients and control group regarding both mass index percentile	tic dy
Figure (14):	Correlation between nitric oxide and to antioxidant capacity in studied diabe patients.	tal tic

Figure (15):	Correlation between carotid intima media	
	thickness in studied diabetic patients and	
	age	.95
Figure (16):	Correlation between carotid intima media	
	thickness in studied diabetic patients and	
	duration of diabetes.	.95

Introduction

Diabetes mellitus (DM) is a common chronic metabolic syndrome characterized by hyperglycemia as a cardinal biochemical feature. Type-1 D.M is the most common form of D.M in children and adolescents (*Wyatt*, 2008).

The incidence of type 1 diabetes has been increasing by about 3% per year (*Aanstoot et al.*, 2007).

Diabetes mellitus type 1 is an important risk factor for the development of cardiovascular disease. Patients with diabetes show a 2- to 10-fold risk for developing atherosclerotic lesions compared with the normal population. Even if atherosclerotic complications become manifest in the adult diabetic patient, the process of vascular changes starts much earlier (*Dalla Pozza et al.*, 2007).

There is a growing interest to prevent the cardiovascular disease risk factors early in the course of the disease, even at pediatric stages. It is necessary to identify children with type 1 diabetes with the highest risk for CHD using objective and noninvasive studies (*Rabago Rodriguez et al.*, 2007).

Carotid artery intima thickness (IMT), as measurable by high-resolution B-mode ultrasonography, is a noninvasive marker of subclinical atherosclerosis. Recently, normative values for the IMT in children and adolescents have been published (*Dalla Pozza et al.*, 2007).

Diabetic patients are exposed to increased oxidative stress due to several mechanisms which include not only oxygen free radical generation due to non enzymatic glycosylation and oxidation of glycation products but also change in tissue content and activity of antioxidant defense system. Increased levels of the products of oxidative damage to lipids have been detected in serum of diabetic patients, and their presence correlates with the development of complications (*Ramakrishna and Jaikhani*, 2007).

The role of oxidative stress in diabetes mellitus as a possible link between metabolic control and vascular complications have been subject of great interest (*Vessebly et al.*, 2002).

Total Antioxidant Capacity (TAC) is found to be significantly lower in diabetic patients. Total Antioxidant Capacity (TAC) is capable of serving as a parameter to monitor diabetes of patients with type 1 DM (*Akkaya and Celik*, 2009).

A depletion of the total antioxidant capacity is associated with a higher incidence of diabetic complications (*Opara et al.*, 1999).

Nitric oxide is also a natural antioxidant which mediates endothelial-dependent vasodilatation and possesses additional anti-atherogenic properties associated with the coagulation cascade, platelet activation and angiogenesis. Reduced bioavailability of nitric oxide has been reported in diabetes (*Browne et al.*, 2007).

Giannini et al. (2009) concluded that serum nitrite/nitrate can be used as positive determinants of atherosclerosis assessed by carotid intima media thickness in diabetic patients.

Aim of the Work

Assessment of carotid intima media thickness in type1 diabetes mellitus in relation to plasma nitric oxide and plasma total antioxidant capacity levels and with diabetes duration, glycemic control and microvascular complications.

Diabetes Mellitus

Definition:

"A group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both" (*Fenn*, 2011).

Classification of diabetes mellitus:

Table (1): Etiologic classification of diabetes mellitus

Liologic classification		
	on, usually leading to absolute insulin	
deficiency)		
A. Immune-mediated		
B. Idiopathic		
	m predominantly insulin resistance with	
-	edominantly secretory defect with insulin	
resistance)		
III. Other specific types of diabetes		
A. Genetic defects of B-cell function:	:	
1. Chromosome 12, HNF-1α	5. Chromosome 17, HNF-1β	
(MODY3)	(MODY5)	
2. Chromosome 7, glucokinase	6. Chromosome 2, neuro	
(MODY2)	D1(MODY6)	
3. Chromosome 20, HNF-4α	7. Mitochondrial DNA	
(MODY1)	8. Others	
4. Chromosome 13,insulin		
promoter factor 1(IPF-1;		
MODY4)		
B. Genetic defects in insulin action:		
Type A insulin resistance	4. Lipotrophic diabetes	
2. Leprechaunism	5. Others	
3. Rabson-Menednhall syndrome		
C. Diseases of the exocrine pancreas:		
1. Pancreatitis	5. Hemochromatosis.	
2. Neoplasia	6. Fibrocalculous pancreatopathy	
3. Trauma / pancreatectomy	7. Others	
4. Cystic fibrosis		
D. Endocrinopathies:		
1. Acromegaly	5. Hyperthyroidism	
2. Cushing's syndrome	6. Somatostatinoma	
3. Glucagonoma	7. Aldosteronoma	
4. Pheochromocytoma 8. Others		