New Trends in Management of Advanced Stages of Renal Cell Carcinoma

Essay

Submitted for Partial Fulfillment of Master Degree in Clinical Oncology and Nuclear Medicine

By

Mary Tharwat Helmy

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{C}h$

Faculty of Medicine, Tanta University

Under Supervision of

Prof. Dr. Manal Moawad Abdel Wahab

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Dr. Mohamed Mohamed El. Bassiouny

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Dr. Amr Shafik Tawfik

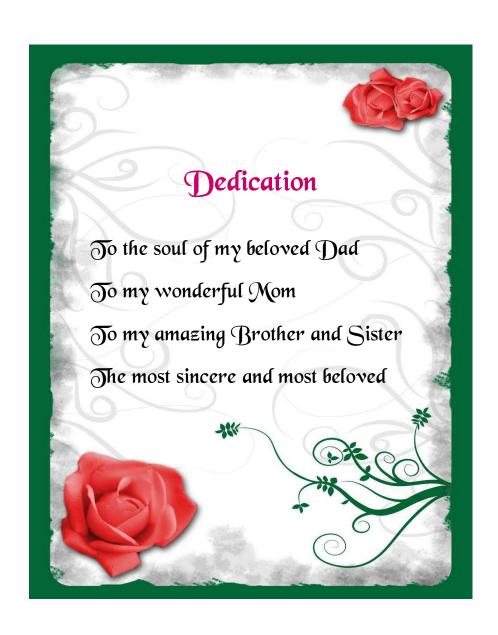
Lecturer of Clinical Oncology and Nuclear Medicine
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2012

Allah

First and above all, I pray thanking you for your great Blessing, giving me the effort to complete and achieve this work.

I would like to express my deep gratitude, thanks, and respect to our eminent **Prof. Dr. Manal Moawad Abdel Wahab**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University for her enthusiastic support, encouragement valuable scientific advices, I'm so proud to complete this work under her supervision. May God bless her.


I would like to express my thanks and admiration to **Prof. Dr.**Mohamed Mohamed El.Bassiouny, Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University for his kind and meticulous supervision, support, help, valuable supervision all through the work.

I am extremely grateful to **Dr. Amr Shafik Tawfik,** Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University for his kind supervision, encouragement, wonderful support and meticulous revision of this work.

I am really honored by the presence of **Prof. Dr. Ehsan El-Ghoneme**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Cairo University, and **Prof. Dr. Tarek Hussein**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University.

Mary Tharwat

List of Contents

Subject	Page
List of Abbreviations	I
List of Tables	V
List of Figures	VII
Introduction	1
Aim of the Work	4
Review of Literature	
Chapter (1): Surgical Anatomy	5
Chapter (2): Epidemiology Etiology & Risk Factors	9
Chapter (3): Molecular Biology of Renal Cell	14
Carcinoma Signaling Pathways for	
Intervention	
Chapter (4): Diagnosis	22
Chapter (5): Pathological Subtypes	
Chapter (6): Staging and Prognosis	
Chapter (7): Treatment Options of Advanced Stages	58
of RCC	
A- Surgery	58
B- Chemotherapy	65
C- Radiotherapy	68
D- Immunotherapy and Vaccination	75
E- Targeted Therapy	82
Chapter (8): Toxicities of Targeted Therapy and	110
Management Strategies	
Summary	123
References	126
Arabic Summary	1

List of Abbreviations

5-FU	5-fluorouracil
5-HT3	5- hydroxytryptamine receptor 3
ACE	Angiotensin converting enzyme
AEs	Adverse events
BEV	Bevacizumab
BHD	Birt-Hogg-Dube
CA IX	Carbonic anhydrase IX
CCBs	Calcium channel blockers
ccRCC	Clear cell renal cell carcinoma
CEUS	Contrast enhanced ultrasound
chRCC	Chromophobe renal cell carcinoma
CR	Complete remission
CSF-1R	Colony stimulating factor
CT	Computerized tomography
CWG	Cytokine Working Group
CXR	Chest X Ray
CYP 450	Cytochrome P450
DFS	Disease free survival
DOX	Doxorubicin
EGFR	Epidermal growth factor receptor
EORTC	European Organization for Research and
	Treatment of Cancer
EPIC	European prospective investigation into cancer
	and nutrition
FDA	Food and Drug Administration
FDG-	Fluoro-D-glucose positron emission
PET/CT	Tomography/Computerized tomography

FGFR	Fibroblast growth factor receptors
FH	Fumarate hydratase
FKBP-12	FK506-binding protein 12
FLK/KDR	Fetal liver kinase/ Kinase insert domain receptor
FLT-3	Fms-like tyrosine kinase receptor-3
GEM	Gemzar
GLUT-1	Glucose transporter 1
HD	High dose
HFSR	Hand foot skin reaction
HGM-CoA	3-hydroxy-3-methyl-glutaryl-CoA reductase
reductase	
HIF-1a	Hypoxia inducible factor-1 alpha
HLRCC	Hereditary leiomyomata and renal cell carcinoma
HR	Hazard ratio
Hs	Hours
HU	Hounsfield units
I.V.	Intravenous
INF-a	Interferone-alpha
IU	International Unit
Kg	Kilogram
KPS	Karnofsky Performance status
LC	Local control
LDH	Lactate dehydrogenase
LND	Lymph node dissection
LRF	Locoregional failure
MRI	Magnetic resonance imaging
MSKCC	Memorial Sloan-Kettering Cancer Center
mTOR	Mammalian target of rapamycin
mTORC1	Mammalian target of rapamycin complex 1

MTSC	Mucinous tubular and spindle cell carcinoma
NCCN	National Comprehensive cancer network
NWLCN	North west London Cancer Network
ORR	Overall response rate
OS	Overall survival
P53	protein 53
P70 S6K	Phospho-p70 S6 Kinase
PDGF	Platelet derived growth factor
PHD	prolyl hydroxylase domain
PI3K	Phosphoinositide 3- kinase
PIP3	Phosphatidylinositol-triphosphate
PR	Partial remission
pRCC	Papillary renal cell carcinoma
PTEN	Phosphatase and tensin enzyme
pVHL	Von Hippel-Lindau product
RCC	Renal cell carcinoma
RECIST	Response Evaluation Criteria in Solid Tumor
RN	Radical nephrectomy
RR	Relative risk
RT	Radiation therapy
S.C.	Subcutaneous
SD	Stable disease
SEER	Surveillance, Epidemiology and End Results
STAT1	Signal transducer of activated T 1
SUV	Standardized uptake value
SWOG	Southwest Oncology Group
TARGET	Treatment Approaches in Renal Cancer Global
	Evaluation
TFE3	Translation elongation factor 3

List of Abbreviations 🕏

TGF-a	Transforming growth factor-alpha
TKIs	Tyrosin kinase inhibitors
TSH	Thyroid stimulating hormone
TTP	Time to progression
UCAs	Ultrasonographic contrast agents
US	Ultrasound
VEGF	Vascular endothelial growth factor
VEGFR-1	Vascular endothelial growth factor-1
VHL	Von Hippel-Lindau
Vs.	Versus
WHO	World health organization

List of Tables

Table No.	Title	Page
Table (2.1)	Differential Diagnosis of Hereditary RCC	13
Table (3.1)	Targeted agents and their targets	21
Table (5.1)	2004 WHO Histological classification of RCC	34
Table (6.1)	MSKCC Adverse prognostic factors	56
Table (6.2)	Median survival according to MSKCC Risk groups	56
Table (7.1)	Venous tumor thrombus classification	60
Table (7.2)	Trials evaluating the benefit of cytoreductive nephrectomy in metastatic RCC	62
Table (7.3)	Rational for cytoreductive nephrectomy	63
Table (7.4)	Chemotherapy in Metastatic RCC	67
Table (7.5)	Preoperative Irradiation for RCC	68
Table (7.6)	Postoperative Irradiation for RCC	69
Table (7.7)	Randomized trials of Interferon- α in metastatic RCC	79
Table (7.8)	Vaccine Trials in Metastatic or Advanced RCC	81
Table (7.9)	Summary of the trials	85
Table (7.10)	Best Response Rates of Patients received sorafenib	88

List of Tables 🕏

Table No.	Title	Page
Table (7.11)	Ongoing adjuvant targeted therapy trials for high-risk RCC	103
Table (7.12)	Ongoing phase II clinical trials on neoadjuvant targeted therapies	103
Table (7.13)	Ongoing studies of combination regimens	104
Table (7.14)	Ongoing trials of sequential treatment	107
Table (7.15)	National Comprehensive Cancer Network Guidelines recommendations	109
Table (8.1)	Objective response rate, progression-free and overall survival by hypertension (HTN) status	114

List of Figures

Figure No.	Title	Page
Figure (1.1)	Relation of the kidneys to the thorax and	5
F: (1.0)	vertebral bodies, posterior view	-
Figure (1.2)	Anatomical relationship of the kidneys to the	6
	great vessels: Ao, aorta; IVC, inferior vena	
	cava	
Figure (1.3)	Anatomical relationship of the kidneys to the	7
	surrounding organs: C, colon; D, duodenum;	
	E, esophagus; L, liver; P, pancreas; SI, small	
	intestine; Sp, spleen; St, stomach	
Figure (1.4)	Lymphatic drainage of the kidneys. The dark	8
	lymph nodes represent drainage from the left	
	kidney, and white lymph nodes represent	
	drainage from the right	
Figure (3.1)	VHL gene location	15
Figure (3.2)	In normal kidney, HIF-1a is hydroxylated by	16
	PHD proteins and bound by pVHL,	
	catalysing the polyubiquitylation of HIF-1a	
	for degradation via the proteasome	
Figure (3.3)	Defective pVHL fail to degrade HIF-1a	17
	properly in the presence of oxygen.	
	Consequently HIF-1a is overproduced	
Figure (3.4)	Biologic pathways in RCC	20
Figure (3.5)	mTOR activation supports cancer cell	20
	survival	
Figure (3.6)	Therapeutic targets of anti-angiogenesis	21
	therapies for metastatic RCC	

Figure No.	Title	Page
Figure (4.1)	Imaging pathway in RCC	24
Figure (4.2)	Intratumoral enhancement for assessing	31
	tumor response	
Figure (5.1)	Represents the nephron and the different	35
	RCC subtypes in relation to their positions	
	within the nephron and collecting tubule	
	with their characteristic cytogenetic changes	
Figure (5.2)	Clear cell RCC tumor cells with clear	36
	cytoplasm separated by delicate arborizing	
	vasculature	
Figure (5.3)	Clear cell RCC shows variegated nodular	37
	growth (arrows) with areas of hemorrhage	
	and necrosis (arrowheads)	20
Figure (5.4)	Papillary RCC contains areas of	38
	hemorrhage, necrosis, and cystic	
Figure (5.5)	degeneration Papillary RCC type 1 papillae covered by	38
Figure (3.3)	small cells with scanty cytoplasm arranged	36
	in a single layer	
Figure (5.6)	Papillary RCC type 2 tumor cells of high	39
g	nuclear grade, eosinophilic cytoplasm and	
	pseudostratified nuclei	
Figure (5.7)	Chromophobe RCC solitary, circumscribed,	40
	and not capsulated mass with a	
	homogeneous light brown cut surface	
		40
Figure (5.8)	Chromophobe RCC large, polygonal cells	40
	with prominent cell membrane, irregular	
	nuclei with perinuclear clear halo	
		İ

Figure No.	Title	Page
Figure (5.9)	Multilocular cystic RCC Macroscopic and	41
	Microscopic pictures	
Figure (5.10)	Collecting-duct carcinoma showing	42
	infiltrating gray-white tumor	
Figure (5.11)	Collecting-duct carcinoma infiltrating	42
	irregular tubules embedded in fibro-	
	inflammatory stroma	
Figure (5.12)	Renal medullary carcinoma infiltrative mass	43
T: (5.10)	arises from the medulla of the kidney	40
Figure (5.13)	Renal medullary carcinoma: solid sheets of	43
	cells with abundant cytoplasm, large nuclei,	
	and prominent nucleoli. Intratumoral sickled	
	red blood cells are seen	
Figure (5.14)	MTSC exhibits bulging shiny mucoid cut	44
	surface	
Figure (5.15)	MTSC composed of tightly packed	45
	elongated tubules separated by abundant	
	basophilic extracellular mucin. Aggregates	
E' (516)	of spindled cells may be present	1.0
Figure (5.16)	Xp11.2 translocation-associated RCC are	46
	generally cortical or subcapsular, well-circumscribed lesions with yellow-tan,	
Figure (5.17)	variegated cut surfaces Translagation associated PCC has	16
Figure (5.17)	Translocation-associated RCC has	46
E (F 4)	heterogeneous morphology	71
Figure (7.1)	CT based treatment plan using a combination of four fields	71
Figure (7.2)	Illustration of a preoperative treatment plan for a	71
Figure (7.2)	locally advanced RCC	71
	locally advanced RCC	

List of Figures 🕏

Figure No.	Title	Page
Figure (7.3)	postoperative radiation therapy for a positive	72
	margin status post left radical nephrectomy	
Figure (7.4)	HR for PFS among Subgroups of Patients	88
	received sorafenib	
Figure (7.5)	Kaplan-Meier PFS probability curves for	90
	patients receiving BEV+IFN-a patients	
	receiving IFN-a monotherapy	
Figure (7.6)	Kaplan-Meier Estimates of OS for INF-a	92
	group, the temsirolimus group, and the	
	combination-therapy	
E' (7.7)	2.5	0.4
Figure (7.7)	Kaplan-Meier estimates of PFS of	94
	Everolimus vs. Placebo	
Figure (7.8)	PFS with subgroup analysis in patients	95
	receiving Everolimus vs. Placebo	
Figure (7.9)	Kaplan-Meier survival curves of PFS in	96
	overall study population for Pazopanib vs.	
	Placebo	
Figure (7.10)	Subgroup analyses of PFS for patients	97
	treated with Pazopanib vs. Placebo	
Figure (7.11)	OS of adjuvant therapies versus no therapy	102

Introduction

Each year In Europe, approximately 40,000 patients are diagnosed with Renal cell carcinoma (RCC), leading to 20,000 deaths (*Patard et al., 2011*). Although it is the tenth most common malignancy in Europe it accounts for only 2–3% of cancers (*Escudier et al., 2012*). With newer therapies, the median survival period of patients with advanced RCC is about 26 months (*Banumathy and Cairns, 2010*).

The incidence of RCC is increasing at around 2% per year, this had been attributed to increased detection due to the wide spread of imaging modalities (*Wood and Brown*, 2012).

Renal cell carcinoma accounts for approximately 90% of renal malignancies. According to the World Health Organization, there are three major histological RCC types; clear cell renal cell carcinoma (ccRCC) (75%), papillary renal cell carcinoma (pRCC) (10–15%), and chromophobe renal cell carcinoma (chRCC) (5%). pRCC can further be divided into two different subtypes, type 1 and type 2 (*Ljungberg et al.*, 2010).

Immunohistologic and ultrastructural analysis have suggested that the proximal renal tubular epithelium is the tissue of origin of most renal tumors. Renal tumors tend to be spherical, but may vary widely in size. The average diameter is