

# **Applications of Phasor Measurement Units** (PMUs) in Power System Protection

#### Ph.D. Thesis

# By Eng. Mohamed Ezzat Abdelrahman Abdelghani

Submitted in partial fulfillment of the requirements for the Ph.D. degree in Electrical Engineering

# **Supervised By**

Prof. Dr. Almoataz Youssef Abdelaziz Dr. Said Fouad Mekhamer

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

#### **EXAMINERS COMMITTEE**

Name: Mohamed Ezzat Abdelrahman Abdelghani

Thesis title: Application of Phasor Measurement Units (PMUs) in Power

**System Protection** 

**Degree:** Submitted in partial fulfillment of the requirements for the

PhD. degree in electrical engineering

#### Name, title and affiliation

#### **Signature**

#### Prof. Dr. A. G. Phadke

Professor of Electric Power, University of Virginia Tech., USA.

# Prof. Dr. M. A. Elsharkawy

Professor of Electric Power, University of Ain Shams, Egypt.

#### Prof. Dr. Almoataz Youssef Abdelaziz

Professor of Electric Power, University of Ain Shams, Egypt.

#### Dr. Said Fouad Mekhamer

Electric Power and Machines Department, University of Ain Shams, Egypt.

#### **SUPERVISORS COMMITTEE**

Name: Mohamed Ezzat Abdelrahman Abdelghani

Thesis title: Application of Phasor Measurement Units (PMUs) in

Power System Protection

**Degree:** Submitted in partial fulfillment of the requirements for the

PhD. degree in electrical engineering

#### Name, title and affiliation

#### Prof. Dr. Almoataz Youssef Abdelaziz

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

#### Dr. Said Fouad Mekhamer

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University **STATEMENT** 

This Thesis is submitted to Ain Shams University in partial fulfillment of the

requirements for PhD. degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the

department of electrical power and machines, Ain Shams University. No part of

this thesis has been submitted for a degree or a qualification at any other

university or institution.

Name: Mohamed Ezzat Abdelrahman Abdelghani

Signature: .....

Date: 23 / 08 / 2012

iv

# **ACKNOLEDGEMENT**

I thank God, for wisdom and knowledge that He has blessed me. You made me strong. You gave me reasons to go and make the best out of me. You are the reason why I am here.

I would like to thank my supervisors: Professor Almoataz Youssef Abdelaziz and Dr. Said Fouad Mekhamer for their continuous guidance, support, and encouragement throughout my research study. They have been wonderful advisors to me and major influence in my academic life. I could not possibly list all that I have learned from them.

I am grateful for my parents and my wife, who helped me through all these. Thank you for supporting me in every way.

Mohamed Ezzat Abdelrahman

Cairo, 2012

## **ABSTRACT**

A reliable, continuous supply of electric energy is essential for the functioning of today's modern complex and advanced society. Electricity is one of the prime factors of the growth. It determines the value of the society.

The Phasor Measurement Unit (PMU) is considered to be one of the most important measuring devices in the field of power systems protection. The distinction comes from its unique ability to provide synchronized phasor measurements of voltages and currents from widely dispersed locations in an electric power grid. The commercialization of the Global Positioning Systems (GPS) with accuracy of timing pulses in the order of 1 microsecond allowed for the commercial production of phasor measurement units.

This thesis presents a protection scheme used for detection of single line outage in a transmission network using Support Vector Machine (SVM). The classification task is performed for each line in the network using parallel processing, where the state of each line is determined by an individual SVM.

The proposed technique has been trained and tested through computer simulation studies for a typical 14-bus and 30-bus IEEE network models implemented in PSCAD/EMTDC package. The PMUs calculations use Rockefeller and Udren algorithm to calculate the buses phase angles that are a basic factor used in detection of outaged line as they change according to the power flow change followed by the line outage. The SVMs are trained with different kernel functions with different parameter values to get the most optimized model.

Another protection application of PMUs, which is the fault location of both uncompensated and series compensated transmission lines, is also investigated in the thesis. The performance of the proposed method is investigated using PSCAD/EMTDC simulation package with the aid of MATLAB programming tool.

In addition, a fault location of series compensated transmission line is studied for both types of series compensation (i.e. compensation in the middle of the line and compensation at both ends).

Two proposed approaches are tested; one using voltage measurements only and the other considers both voltage and current measurements. Accuracies are calculated and compared to evaluate the most accurate one.

The computer simulation does not exactly match the field data because the incoming data are affected by the transducers and environmental noise. Therefore, the proposed technique is also tested with superimposed noise test data. Then, it is tested again with superimposed error in line parameters evaluation. This ensures the robustness of the proposed algorithm.

The results presented in this thesis confirm the feasibility of the proposed protection schemes.

The thesis consists of six chapters

Chapter (1): Gives an introduction to PMUs.

<u>Chapter (2):</u> Introduces a literature survey of most protection applications of PMUs.

<u>Chapter (3):</u> presents a study of SVM as a classification tool used in line outage detection.

<u>Chapter (4):</u> Shows a numerical simulation for line outage studies.

<u>Chapter (5):</u> Introduces a numerical simulation for fault location studies.

<u>Chapter (6):</u> presents the extracted conclusions and future work suggestions.

## TABLE OF CONTENTS

| EXAMINERS COMMITTEE                                                  | ii    |
|----------------------------------------------------------------------|-------|
| SUPERVISORS COMMITTEE                                                | iii   |
| STATEMENT                                                            | iv    |
| ACKNOWLEDGEMENT                                                      | v     |
| ABSTRACT                                                             | vi    |
| TABLE OF CONTENTS                                                    | viii  |
| LIST OF TABLES                                                       | xi    |
| LIST OF FIGURES                                                      | xii   |
| LIST OF ABBREVIATIONS                                                | xiv   |
| 1. INTRODUCTION                                                      | 1-15  |
| 1.1 General                                                          | 1     |
| 1.2 PMU overview                                                     | 1     |
| 1.3 Applications of PMUs in power systems                            | 4     |
| 1.3.1 PMUs in system measurement, observability and state estimation | 5     |
| 1.3.2 PMUs in voltage security and voltage collapse                  | 6     |
| 1.3.3 PMUs in power system control and wide area control             | 7     |
| 1.3.4 PMUs in power system stability                                 | 8     |
| 1.4 PMUs in power system protection                                  | 10    |
| 1.4.1 Out of step protection using PMUs                              | 10    |
| 1.4.2 Transmission line protection using PMUs                        | 11    |
| 1.4.3 Fault location using PMUs                                      | 11    |
| 1.4.4 Islanding detection using PMUs                                 | 12    |
| 1.4.5 Scope of protection applications in the thesis                 | 12    |
| 1.5 Thesis objectives and contributions                              | 13    |
| 1.6 Thesis outlines                                                  | 14    |
| 2. PROTECTION APPLICATIONS OF PHASOR MEASUREMENT                     | 16-44 |
| UNITS (PMUs)                                                         |       |
| 2.1 General                                                          | 16    |
| 2.2 Mathematical models of phasor measurements                       | 17    |
| 2.2.1 The Mann and Morisson algorithm                                | 17    |
| 2.2.2 The Rockefeller and Udren algorithm                            | 19    |
| 2.2.3 The full cycle Fourier transform                               | 20    |
| 2.2.4 The half cycle Fourier transform                               | 21    |
| 2.3 Line outage detection in power systems using PMUs                | 22    |
| 2.3.1 Literature review on line outage study                         | 23    |
| 2.3.2 Problem formulation                                            | 26    |
| 2.4 Fault location in power systems using PMUs                       | 27    |
| 2.4.1 Literature review on fault location study                      | 28    |
| 2.4.1.1 One end algorithms                                           | 28    |
| 2.4.1.2 Two end algorithms                                           | 30    |
| 2.4.2 The proposed approaches of fault location                      | 33    |
| 2.4.2.1 A voltage measurements-based algorithm                       | 34    |
| 2.4.2.2 A voltage and current measurements-based algorithm           | 37    |

| 2.4.2.2.1 Algorithm for uncompensated line                                                   | 37     |
|----------------------------------------------------------------------------------------------|--------|
| 2.4.2.2.2 Algorithm for series compensated line                                              | 39     |
| 2.4.2.1 Algorithm based on voltage measurements only                                         | 34     |
| 2.4.2.2 Algorithm based on voltage and current measurements                                  | 37     |
| 3. SUPPORT VECTOR MACHINE (SVM)                                                              | 45-62  |
| 3.1 General                                                                                  | 45     |
| 3.2 Statistical learning theory                                                              | 46     |
| 3.2.1 VC Dimension                                                                           | 48     |
| 3.2.2 Structural risk minimization                                                           | 49     |
| 3.3 Support vector machine for binary classification                                         | 50     |
| 3.3.1 Formal explanation of SVM                                                              | 51     |
| 3.3.2 Soft margin                                                                            | 55     |
| 3.4 Feature space                                                                            | 58     |
| 3.4.1 Kernel functions                                                                       | 59     |
| 3.4.1.1 Polynomial kernel                                                                    | 59     |
| 3.4.1.2 Gaussian radial basis function kernel                                                | 59     |
| 3.4.1.1 Exponential radial basis function kernel                                             | 60     |
| 3.4.1.1 Multi-layer Perceptron kernel                                                        | 60     |
| 3.4.2 Kernel selection                                                                       | 60     |
| 3.5 Use of SVM in line outage detection                                                      | 61     |
| 4. NUMERICAL SIMULATION OF SVM BASED-DETECTION OF LINE OUTAGE USING PMU TECHNOLOGY           | 63-89  |
| 4.1 General                                                                                  | 63     |
| 4.2 Power system simulation models                                                           | 64     |
| 4.3 Simulation results of line outage detection in the IEEE 14-bus system using SVM          | 65     |
| 4.3.1 Effect of number of PMUs                                                               | 67     |
| 4.3.2 Comparison of different study cases using polynomial kernel                            | 73     |
| 4.3.3 Results of radial basis function (RBF) kernel compared to that using polynomial kernel | 79     |
| 4.4 Simulation results of the IEEE 30-bus system                                             | 85     |
| 5. NUMERICAL SIMULATION OF FAULT LOCATION ALGORITHMS                                         | 90-117 |
| 5.1 General                                                                                  | 90     |
| 5.2 Power system simulated model                                                             | 90     |
| 5.3 Results of fault location algorithm based on voltage measurements only                   | 91     |
| 5.4 Results of fault location algorithm based on both voltage and current measurement        | 96     |
| 5.5 Robustness of the fault location proposed algorithm                                      | 102    |
| 5.6 Results of fault location algorithm for series compensated line from the middle          | 106    |
| 5.6.1 Numerical simulation of SC characteristics                                             | 106    |
| 5.6.2 Results of fault location algorithm for SC at the middle of the line                   | 110    |
| 5.7 Results of fault location algorithm for series compensated line from                     | 115    |

# both ends

| 6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE                           |     |  |  |  |
|-------------------------------------------------------------------------|-----|--|--|--|
| WORK                                                                    |     |  |  |  |
| 6.1 General                                                             | 118 |  |  |  |
| 6.2 Conclusions                                                         | 118 |  |  |  |
| 6.3 Future work suggestions                                             | 119 |  |  |  |
| REFERENCES                                                              | 121 |  |  |  |
| PUBLICATIONS                                                            |     |  |  |  |
| APPENDIX A: Details of The IEEE 14-Bus And 30-Bus Systems               |     |  |  |  |
| <b>APPENDIX B: Simulated Power System Parameters For Fault Location</b> |     |  |  |  |
| Application                                                             |     |  |  |  |

# LIST OF TABLES

| <b>Table 4.1</b>  | Results of study case with 2 PMUs located at buses 2 and 10          | 69  |
|-------------------|----------------------------------------------------------------------|-----|
| <b>Table 4.2</b>  | Results of study case with 3 PMUs located at buses 2, 7 and 10       | 70  |
| <b>Table 4.3</b>  | Results of study case with 4 PMUs located at buses 2, 7, 10 and 13   | 71  |
| <b>Table 4.4</b>  | Results of study case with 4 PMUs (25% extra loading at bus 3)       | 74  |
| <b>Table 4.5</b>  | Results of study case with 4 PMUs (40% extra loading at bus 9)       | 75  |
| <b>Table 4.6</b>  | Results of study case (25% extra loading at bus 14) using RBF kernel | 80  |
| <b>Table 4.7</b>  | Results of study case (25% extra loading at bus 3) using RBF kernel  | 81  |
| <b>Table 4.8</b>  | Results of study case (40% extra loading at bus 9) using RBF kernel  | 82  |
| <b>Table 4.9</b>  | Comparison of results for both polynomial and RBF kernels            | 84  |
| <b>Table 4.10</b> | Results of study case (25% extra loading at bus 18) using RBF kernel | 86  |
|                   | in the 30-bus system                                                 |     |
| <b>Table 4.11</b> | Results of study case (20% extra loading at buses 24 and 29) using   | 88  |
|                   | RBF kernel in the 30-bus system                                      |     |
| Table 5.1         | Results of fault location algorithm based on voltage measurements    | 94  |
|                   | only                                                                 |     |
| <b>Table 5.2</b>  | Results of fault location algorithm base on both voltage and current | 98  |
|                   | measurements                                                         |     |
| Table 5.3         | Comparison between accuracies without and with signal noise          | 103 |
| <b>Table 5.4</b>  | Comparison between accuracies without and with line parameters       | 105 |
|                   | errors                                                               |     |
| Table 5.5         | Results of fault location for series compensated line at 50% of its  | 113 |
|                   | length                                                               |     |
| <b>Table 5.6</b>  | Results of fault location algorithm for series compensated line from | 116 |
|                   | both ends                                                            |     |

# LIST OF FIGURES

| Fig. 1.1        | Phasor representation of sinusoidal wave                                         | 2   |
|-----------------|----------------------------------------------------------------------------------|-----|
| Fig. 1.2        | Angle relation between phasors in power systems                                  | 2   |
| Fig. 1.3        | Phasor Measurement Unit block diagram                                            | 4   |
| Fig. 2.1        | Multilayered wide area protection architecture                                   | 16  |
| Fig. 2.2        | Line outage problem formulation                                                  | 26  |
| Fig. 2.3        | Two-end synchronized fault location arrangement                                  | 31  |
| Fig. 2.4        | Transmission line considered in the study                                        | 34  |
| Fig. 2.5        | Transmission line considered in the study under fault condition                  | 35  |
| <b>Fig. 2.6</b> | Distributed parameter model of faulted transmission line for the i <sup>th</sup> | 37  |
| C               | symmetrical component                                                            |     |
| Fig. 2.7        | Schematic diagram of two-end fault location on series compensated                | 40  |
|                 | line                                                                             |     |
| Fig. 2.8        | Equivalent circuit diagram for two locations of fault                            | 41  |
| Fig. 2.9        | Equivalent circuit diagram for a fault in series compensated line with           | 43  |
|                 | two-end capacitors                                                               |     |
| Fig. 3.1        | Modeling errors in statistical learning theory                                   | 46  |
| Fig. 3.2        | VC dimension example                                                             | 48  |
| Fig. 3.3        | Illustration of the generalization bound depending on the VC                     | 49  |
|                 | dimension                                                                        |     |
| <b>Fig. 3.4</b> | The optimal separating hyper-plane                                               | 50  |
| Fig. 3.5        | Two of many separating lines                                                     | 51  |
| <b>Fig. 3.6</b> | Maximum margin hyper-plane and margins for a SVM trained with                    | 53  |
|                 | samples from two classes                                                         |     |
| <b>Fig. 3.7</b> | Inseparable case in a two-dimensional space                                      | 56  |
| <b>Fig. 3.8</b> | Mapping of the input space into a high dimensional feature space                 | 58  |
| <b>Fig. 3.9</b> | Use of SVM in the line outage problem                                            | 62  |
| Fig. 4.1        | Schematic diagram of the IEEE 14-bus system                                      | 64  |
| Fig. 4.2        | Schematic diagram of the IEEE 30-bus system                                      | 65  |
| Fig. 4.3        | Flowchart of the proposed approach                                               | 66  |
| Fig. 4.4        | Comparison of using different number of PMUs                                     | 72  |
| Fig. 4.5        | Comparison of different study cases using polynomial kernel                      | 76  |
| <b>Fig. 4.6</b> | Phase angle variations for an outage of line 6-13                                | 77  |
| Fig. 4.7        | Phase angle variations for an outage of line 7-8                                 | 78  |
| Fig. 4.8        | Comparison of different study cases using RBF kernel                             | 83  |
| Fig. 5.1        | Schematic diagram of transmission line simulation model                          | 91  |
| Fig. 5.2        | Flowchart of the algorithm based on voltage measurements only                    | 92  |
| Fig. 5.3        | Comparison of obtained results and that of [64] for $R_f = 10 \Omega$            | 95  |
| Fig. 5.4        | Comparison of obtained results and that of [64] for $R_{\rm f} = 50~\Omega$      | 95  |
| Fig. 5.5        | Flowchart of the algorithm based on both voltage and current                     | 97  |
|                 | measurements                                                                     |     |
| <b>Fig. 5.6</b> | Relation between the actual fault location in miles and the percentage           | 100 |
|                 | errors                                                                           |     |
| Fig. 5.7        | Comparison of obtained results for the two proposed algorithms                   | 100 |

| Fig. 5.8  | Effect of applying a noise of SNR equals to 20 dB and effect band pass filter                                       | 102 |
|-----------|---------------------------------------------------------------------------------------------------------------------|-----|
| Fig. 5.9  | Effect of incorrect parameters of the transmission line                                                             | 104 |
| Fig. 5.10 | MOV protected series capacitor arrangement                                                                          | 107 |
| Fig. 5.11 | Simulated voltage-current characteristics of MOV                                                                    | 107 |
| Fig. 5.12 | Instantaneous voltage and currents of SC arrangement                                                                | 108 |
| Fig. 5.13 | Equivalent impedance of SC arrangement                                                                              | 109 |
| Fig. 5.14 | Simulated model of fault location for series compensated line at 50% of the line                                    | 110 |
| Fig. 5.15 | Flowchart of series compensated line fault location algorithm                                                       | 112 |
| Fig. 5.16 | Simulated model of fault location for series compensated line from both ends                                        | 115 |
| Fig. 5.17 | Relation between the percentage fault location and the percentage errors for series compensated line from both ends | 117 |

#### LIST OF ABBREVIATIONS

AI Artificial Intelligence
ANN Artificial Neural Network
CT Current Transformer

**DC** Direct Current

**DFT** Discrete Fourier Transform **DG** Distributed Generation

**DT** Decision Tree

**EHV** Extra High Voltage

**ERM** Empirical Risk Minimization

**FACTS** Flexible Alternating Current Transmission Systems **FHRCNN** Fuzzy Hyper-Rectangular Composite Neural Networks

**FT** Fourier Transform

GPS Global Positioning Systems
HVDC High Voltage Direct Current
IED Intelligent Electronic Device

**IEEE** Institute of Electrical and Electronics Engineers

KHS Kernel Hilbert Spaces
KTT Karush-Kuhn-Tucker
LPC Local Protection Center
MOV Metal Oxide Varistor
PI Performance Indices
PMU Phasor Measurement Unit

**PSCAD** Power System Computer Aided Design

**QP** Quadratic Programming **RBF** Radial Basis Function

**RFC** Remote Feedback Controller **ROCOF** Rate Of Change Of Frequency

SC Series Compensation

**SCADA** Supervisory Control And Data Acquisition

**SDFT** Smart Discrete Fourier Transform

SPCSystem Protection CenterSRMStructural Risk MinimizationSVCStatic Var CompensatorSVMSupport Vector Machine

**TSCS** Thyristor Controlled Switched Capacitor

TVE Total Vectorized Errors
 UHV Ultra High Voltage
 VC Vapnik - Chervonenkis
 VSM Voltage Security Monitoring

WAMS Wide Area Monitoring Systems

Chapter 1 Introduction

# **Chapter 1**

# Introduction

#### 1.1 GENERAL

In the last few decades, much research work has been concentrating on the exploration and introduction of Global Positioning Systems (GPS) facilities. It is a group of satellites which is placed into space orbits capable to position data to locate anything on Earth. The satellites transmit timing signals and position data. GPS was used in geographical and military applications. Then, it was utilized in navigation and agricultural applications. Now, in engineering applications, GPS are continually spreading in civil engineering applications, in communication, and in electric power applications.

Due to the correlation between Phasor Measurement Units (PMUs) and the GPS, PMUs began to spread widely after the great improvement in the satellite techniques and communications. Nowadays, PMU is one of the most important units in the applications of modern power systems and attractive measuring devices for the electrical engineering researches.

This chapter presents an introduction including an overview of the PMU, fields of applications of the PMU and the use of PMU in power system protection. The objectives and contributions are stated. Finally, thesis outlines are cleared.

#### 1.2 PMU OVERVIEW

Phasor is a quantity with a magnitude and phase (with respect to a reference) that is used to present a sinusoidal signal as shown in Fig. 1.1.