

# 127, 17 27, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20) 77, 17 (20









# جامعة عين شمس

التوثيق الالكتروني والميكروفيلم



نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات



# يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %



ثبكة المعلومات الجامعية





Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

# Study of Some Factors Affecting the Production of Ferrosilicon Magnesium Alloy

Submitted By

## Saeed Nabil Saeed Ghali

(B.Sc. 1995)

Central Metallurgical Research and Development Institute (CMRDI)

For Partial Fulfillment of the Degree of M.Sc. in Chemistry

Faculty of Science Cairo University

82.27

2001

# **Approval Sheet for Submission**

| Title of 7 | Thesis:         | Study of Some Factors A<br>Magnesium Alloy | ffecting the Production of Fer | rosilicon |
|------------|-----------------|--------------------------------------------|--------------------------------|-----------|
| Name of    | Candidate:      | Saeed Nabil Saeed Ghali                    |                                |           |
| This thes  | sis has been ap | oproved for submission l                   | y the supervisors:             |           |
| 1.         | Prof. Dr. Am    | in Mahmoud Baraka                          |                                |           |
|            | Signature: F    | 1. Baratz                                  |                                |           |
| 2.         | Prof. Dr. Ma    | gdi Mikhail Naoum                          | Magdi Nuc                      | ٠         |
|            | Signature:      |                                            |                                |           |
| 3.         | Prof. Dr. Kai   | nal-El-Fawakhry                            |                                |           |
|            | Signature:      | h                                          |                                |           |
|            | •               |                                            |                                |           |
|            |                 |                                            |                                |           |
|            |                 | Prof. D                                    | r. Mohammed Helmy Elnag        | di        |
|            |                 | Ç<br>P r                                   | of. M. H. EL-NAGDI             |           |

Chairman of the Chemistry Department

Faculty of Science, Cairo University

#### FACULTY OF SCIENCE

### TO WHOM IT MAY CONCERN

This is to certify that: Saeed Nabil Saeed Ghali has attended and passed successfully the following postgraduate courses as a partial fulfillment of the requirements of the degree of master of science.

- 1. Surface Chemistry
- 2. Electrochemistry of Molten Salts
- 3. Molecular Spectroscopy
- 4. Voltammetry
- 5. Nuclear Chemistry
- 6. Mathematical Modelling
- 7. Advanced Analytical Chemistry
- 8. Molecular Structure
- 9. Quantum Chemistry
- 10. Electrokinetic Phenomena
- 11. Mechanism of Inorganic Reactions
- 12. Electrochemistry
- 13. Double Layer
- 14. Catalysis
- 15. Thermal Analysis
- 16. Statistcal Thermodynamics
- 17. Physical Metallurgy
- 18. X-ray Analysis
- 19. Mathematics
- 20. German language

Prof. Dr. Helmy Elnagdy
Chairman of chemistry department

#### **ABSTRACT**

Name:

Saeed Nabil Saeed Ghali

Title of Thesis:

Study of Some Factors Affecting the Production of

Ferrosilicon Magnesium Alloy

Degree:

M.Sc. unpublished Master of Science Thesis, Faculty of

Science - Cairo University, 2001.

#### Abstract:

In this study, two techniques have been investigated to produce ferrosilicon magnesium alloy. In the first, local calcinated dolomite ore was reduced either by the silicothermic or the aluminosilicothermic processes; the reducing agents used were either ferrosilicon or a mixture of ferrosilicon and aluminium respectively, the magnesium produced reacts with excess ferrosilicon to form Mg2Si. Some of the factors that affect the reduction process, such as, the amount of the reducing agent, the composition of the magnesium ores and the type of the added fluxing materials, i.e. lime, fluorspar, bauxite and quartzite, have been investigated. It is aimed, then, to determine the optimum conditions for obtaining the highest magnesium recovery.

In the second technique, magnesium metal was immersed in molten ferrosilicon. The highest magnesium recovery using the reduction technique was found to be about 13.8%, whereas in the immersion technique, a higher magnesium recovery up to 77% was achieved.

Furthermore, study of the production cost of both techniques revealed that the immersion technique is more economic compared to the reduction one, in producing the ferrosilicon magnesium alloy.

The magnesium metal immersion in molten ferrosilicon has been successfully tested on an industrial scale, in the Egyptian Company for Ferroalloys to produce the ferrosilicon magnesium alloy containing 5% Mg with high magnesium recovery of 89%.

Key words: Ferrosilicon Magnesium, Ferrosilicon, Magnesium, alloy

Supervisors:

Prof. Dr. Amin Mahmoud Baraka, A. Baraka Prof. Dr. Magdi Mikhail Naoum Maedi W.

Prof. Dr. Kamal-El-Fawakhry

Prof. Dr. Mohammed Helmy Elnagdi

Chairman of the Chemistry Department Faculty of Science, Cairo University

## **Acknowledgement**

The author wishes to express his deepest gratitude to Prof. Dr. Amin Baraka and Prof. Dr. Magdi Naoum, Professors of Physical Chemistry, Faculty of Science, Cairo University, for their kind supervision of this thesis.

I would like also to express my deepest gratitude to Prof. Dr. Kamal El-Fawakhry, Prof. of Steelmaking and Ferroalloys, Vice Dean Extractive Metallurgy Sector, the Central Metallurgical Research and Development Institute (CMRDI), for suggesting the point of research, his valuable discussions, guidance and encouragement during this study.

Thanks are also due to Prof. Dr. Mamdouh Eissa and Assistant Prof. Dr. Hoda El-Faramawy, in the same Department, (CMRDI) for their kind assistance and valuable help during the course of this work.

This is my deep thanks to Prof. Dr. M.L. Mishreky, Head of Steelmaking and Ferroalloys Department, for his continuous encouragement during the work.

Thanks for Dr. Taha Mattar and all staff members and technicians of Steelmaking and Ferroalloys Laboratory for their help during the course of this work.

V

### **Contents**

|             |             | i de la companya de | Page No. |
|-------------|-------------|---------------------------------------------------------------------------------------------------------------|----------|
|             |             |                                                                                                               |          |
| Introductio | n           |                                                                                                               | 1 .      |
| Chantan 1.  | Y itawatuwa | Survivor                                                                                                      | 3        |
| Chapter 1:  | Literature  | Sources of magnesium, calcium and rare earth metals                                                           | 3        |
|             |             |                                                                                                               |          |
|             | 1.1.1.      | Magnesium ores                                                                                                | 3        |
|             | 1.1.2.      | Rare earth metals source                                                                                      | 4        |
|             | 1.1.3.      | Calcium source                                                                                                | 4        |
|             | 1.2.        | Production of ferrosilicon magnesium                                                                          | 5        |
|             | 1.2.1.      | Carbothermic process                                                                                          | 5        |
|             | 1.2.2.      | Metallothermic processes                                                                                      | 7        |
|             | 1.2.2.1.    | Aluminothermic process                                                                                        | 9        |
|             | 1.2.2.2.    | Silicothermic processes                                                                                       | 9        |
|             | 1.2.3.      | Thermodynamic analysis of metallothermic reaction                                                             | 11       |
|             | 1.2.4.      | Factors affecting the silicothermic process                                                                   | 13       |
|             | 1.2.4.1.    | Effect of lime                                                                                                | 13       |
|             | 1.2.4.2.    | Effect of catalyst                                                                                            | 17       |
|             | 1.2.4.2.1.  | Effect of fluorspar                                                                                           | 17       |
|             | 1.2.4.2.2.  | Effect of alumina                                                                                             | 17       |
|             | 1.2.4.3.    | Effect of grade of ferrosilicon                                                                               | 19       |
|             | 1.3.        | Production technologies of ferrosilicon magnesium                                                             | 19       |
|             | 1.3.1.      | Smelting of ferrosilicon magnesium                                                                            | 19       |
|             | 1.3.1.1.    | Smelting of ferrosilicon magnesium in electric arc furnace                                                    | 19       |
|             | 1.3.1.2.    | Smelting of ferrosilicon magnesium in induction furnace                                                       | 21       |
|             | 1.3.2.      | Smelting of ferrosilicon magnesium by reduction of                                                            | 21       |
|             |             | dolomite ore                                                                                                  |          |
|             | 1.3.3.      | Immersion of magnesium in ferrosilicon melt                                                                   | 23       |
|             | 1.3.3.1.    | Thermodynamic analysis of immersion process                                                                   | 23       |

| Chapter 2: | Experiment   | al .                                                       | 29   |
|------------|--------------|------------------------------------------------------------|------|
| -          | 2.1.         | Raw materials                                              | 29   |
|            | 2.2.         | Equipment                                                  | 32   |
|            | 2.2.1.       | Submerged electric arc-furnace                             | 32   |
|            | 2.2.2.       | The built-up shaft                                         | 33   |
|            | 2.3.         | Smelting technique of ferrosilicon magnesium               | 33   |
|            | 2.3.1.       | Smelting technique for reduction process                   | 33   |
|            | 2.3.2.       | Magnesium immersion technique                              | 33 - |
| Chapter 3: | Results and  | Discussion                                                 | 34   |
|            | 3.1.         | Grade of ferrosilicon magnesium alloys                     | 34   |
|            | 3.2.         | Material balance calculations                              | 37   |
| •          | 3.2.1.       | Calculation of the components in the blend                 | 37   |
|            | 3.2.2.       | Calculation of reductant amount                            | 40   |
|            | 3.3.         | Factors affecting the element yield of ferrosilicon        | 45   |
|            |              | magnesium produced by silicothermic process                |      |
|            | 3.3.1.       | Effect of limestone                                        | 46   |
|            | 3.3.2.       | Effect of fluorspar, quartzite and bauxite                 | 51   |
|            | 3.3.3.       | Effect of reducer amount                                   | 63   |
|            | 3.3.3.1.     | Effect of ferrosilicon                                     | 63   |
|            | 3.3.3.2.     | Effect of aluminium as a replacement of ferrosilicon       | 71   |
|            | 3.3.3.2.1.   | Material balance calculations                              | 71   |
| ,          | 3.3.3.2.2.   | Calculation of aluminium amount                            | 72   |
|            | 3.3.3.2.3.   | Mechanism of dolomite reduction process in presence of     | 80   |
|            |              | Al and Si mixture                                          |      |
|            | 3.3.3.2.3.1. | Reduction by silicon                                       | 80   |
|            | 3.3.3.2.3.2. | Reduction by aluminium metal                               | 80   |
|            | 3.3.3.2.3.3. | Reduction by aluminium and silicon mixture                 | 8.1  |
|            | 3.3.3.3.     | Effect of ferrosilicon amount in presence of constant      | 82   |
|            |              | amount of aluminium                                        |      |
|            | 3.3.4.       | Effect of magnesite addition                               | 87   |
|            | 3.3.5.       | Pilot plant heats for production of ferrosilicon magnesium | 93   |
|            |              | alloy by reduction process                                 |      |

Page No.

|  | P | a | ge | N | 0. |
|--|---|---|----|---|----|
|--|---|---|----|---|----|

| 3                      | .4.   | Production of ferrosilicon r   | nagnesium by magnesium            | 95  |
|------------------------|-------|--------------------------------|-----------------------------------|-----|
|                        |       | immersion, in molten ferros    | silicon                           |     |
| 3                      | .4.1. | Material balance calculation   | ns                                | 95  |
| 3                      | .4.2. | Pilot plant heats for the proc | duction of ferrosilicon magnesium | 97  |
|                        |       | alloy by magnesium immer       | rsion technique                   |     |
| . 3                    | .4.3. | Industrial heats for the prod  | uction of ferrosilicon magnesium  | 98  |
|                        |       | alloy by magnesium immer       | sion technique                    |     |
| . 3                    | .5.   | Economic comparison betw       | een reduction and immersion       | 101 |
|                        |       | techniques for the production  | n of ferrosilicon magnesium       |     |
|                        |       | alloy                          |                                   |     |
|                        |       |                                | j                                 |     |
| Summary and Conclusion |       | n                              |                                   | 103 |
|                        |       |                                |                                   |     |
| References             |       |                                |                                   | 106 |
|                        |       |                                |                                   |     |
| Arabic Summ            | ary   | ,                              | 1                                 |     |

## **List of Tables**

|           |                                                                                               | Page No |
|-----------|-----------------------------------------------------------------------------------------------|---------|
| Table 1:  | Effect of molar MgO/CaO ratio on magnesium recovery                                           | 16      |
| Table 2:  | Effect of grade of ferrosilicon on magnesium recovery                                         | 21.     |
| Table 3:  | Chemical analysis of calcinated dolomite                                                      | 29      |
| Table 4:  | Chemical analysis of dolomite                                                                 | 29      |
| Table 5:  | Chemical analysis of 75% ferrosilicon                                                         | 30      |
| Table 6:  | Chemical analysis of 65% ferrosilicon                                                         | 30      |
| Table 7:  | Chemical analysis of fluorspar                                                                | 30      |
| Table 8:  | Chemical analysis of rare earth metal chloride                                                | 30 .    |
| Table 9:  | Chemical analysis of limestone                                                                | 31      |
| Table 10: | Chemical analysis of quartzite                                                                | 31      |
| Table 11: | Chemical analysis of magnesite                                                                | 31      |
| Table 12: | Chemical analysis of bauxite                                                                  | 32      |
| Table 13: | Chemical analysis of CaSi alloy                                                               | 32      |
| Table 14: | Grade of ferrosilicon magnesium according to German standard                                  | 34      |
| Table 15: | Grade of ferrosilicon magnesium according to British standard                                 | 35      |
| Table 16: | Grade of ferrosilicon magnesium according to Brazilian standard                               | 36      |
| Table 17: | Grade of ferrosilicon magnesium according to American standard                                | 36      |
| Table 18: | Effect of limestone amount on the recoveries of Mg, Ca and Si                                 | 47      |
| Table 19: | Effect of quartzite amount on recoveries of Mg, Ca and Si                                     | 52      |
| Table 20: | Effect of fluorspar amount on recoveries of Mg, Ca, and Si                                    | 53      |
| Table 21: | Effect of bauxite amount on recoveries of Mg, Ca, and Si                                      | 54      |
| Table 22: | Effect of ferrosilicon amount on recoveries of Mg, Ca. and Si                                 | 67      |
| Table 23: | Thoeretical and practical Al <sub>2</sub> O <sub>3</sub> produced as a function of Al portion | 75 -    |
|           | in the charge at FeSi/dolomite ratio of 40%                                                   |         |
| Table 24: | Effect of aluminium amount at constant amount of FeSi on the recoveries                       | 76.     |
|           | of Mg, Ca and Si                                                                              |         |
| Table 25: | Effect of FeSi in presence of aluminium on the recoveries of Mg, Ca,                          | 83      |
| ٠         | and Si                                                                                        |         |
| Table 26: | Effect of magnesite amount on the recoveries of Mg, Ca and Si                                 | 88      |

|           |                                                                               | Page No. |
|-----------|-------------------------------------------------------------------------------|----------|
| Table 27: | Pilot plant heats of ferrosilicon magnesium production by reduction technique | 94       |
| Table 28: | Pilot plant heats for producing ferrosilicon magnesium by immersion of        | 99       |
|           | magnesium metal in ferrosilicon melt                                          |          |
| Table 29: | Industrial heats for production of ferrosilicon magnesium alloy by            | 100      |
|           | immersion of magnesium metal in molten ferrosilicon                           |          |
| Table 30: | Prices of raw materials used in the production of ferrosilicon magnesium      | 102      |
|           | alloy by the reduction and immersion techniques                               |          |
| Table 31: | Comparison between the cost of the reduction and immersion                    | 102      |
|           | techniques used for the production of ferrosilicon magnesium alloy            |          |