

Role Of Melatonin In The Protection From Lenticular Damage Caused By UVB Irradiation

A Thesis submitted for the degree of Master of Science As a partial fulfillment for requirements of the Master of Science

Amira Ali Mohamed

B.Sc. (biophysics), 2007 Ain Shams University

Supervised by

Prof. Dr. Mona Salah El-Din Hassan Talaat

Prof. of Biophysics and Head of Biophysics Group, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Salwa Abd Elkawi Ahmed

Prof. of Medical Biophysics-Vision Science Department Research Institute of Ophthalmology.

Prof. Dr. Nahed Saleh Hassan

Prof. of Medical Biophysics- Biochemistry Department National Research Center.

(2013)

APPROVAL SHEET

Name: Amira Ali Mohamed

Title: Role of melatonin in the protection from lenticular damage caused by UVB irradiation

Supervisors

Prof. Dr. Mona Salah El-Din Hassan TalaatHead of Biophysics Group-Physics Department
Faculty of Science-Ain Shams University

Prof. Dr. Salwa Abd Elkawi Ahmed

Prof. of Medical Biophysics-Vision Science
Department-Research Institute of Ophthalmology.

Prof. Dr. Nahed Saleh Hassan

Prof. of Medical Biophysics- Biochemistry Department National Research Center.

Name: Amira Ali Mohamed

Degree : Master

Department: Physics-Biophysics Group

Faculty: Science

University: Ain Shams

Graduation Date: 2007, Ain Shams University

Registration

Grant Date

ACNOWLEDGEMENT

GOD and nothing but **GOD** I get to thank. **GOD** the merciful spirited me the patience to go through all the circumstances throughout my life.

Whatever I said, I cannot be fair in expressing my cardiac gratitude to *Prof. Dr. Mona Salah Eldin Hassan* for her constant support, continuous encouragement and guidance throughout the study.

I would like to extend my sincere appreciation to *Prof. Dr. Salwa Abd Elkawi Ahmed*. She had done her best effort in guiding me to bring this work in the best shape. Without her meticulous guidance and supervision, this thesis would have never been accomplished.

It was a privilege to be supervised by *Prof. Dr. Nahed Saleh Hassan*. Words cannot express my indebtedness to her for her inspiring guidance.

I would like to thank *Prof. Dr. Abd Elsattar Mohammed Sallam and Prof. Dr. Elsayed Mahmoud Elsayed*, for teaching me the basics of biophysics and for their continuous encouragement and support.

Most of all, I would like to express special recognition and thanks to my *Mother*, *Father*, *Husband*, *sister*, *brothers* and *my beautiful Son* for their patience and support throughout the entire work.

Contents

		Page
List of F	igure	
List of T	ables	
Summar	у	
	CHAPTER ONE	
	Introduction and Review of Literature	
1.1	Introduction	1
1.2	Review of literature	2
1.2.1	Ultraviolet-B radiation and its cataractogenic	2
1.2.2	The role of melatonin as a powerful antioxidant	15
	CHAPTER TWO	
	Theoretical Aspects	
2.1	The lens	24

	2.1.1	Lens anatomy	25
	2.1.2	Lens protein	29
	2.1.3	Permeability, diffusion, and transport	31
	2.1.4	Lens transparency	32
2	2.2	Cataract	33
	2.2.1	Classification of cataract	35
2	2.3	Ultraviolet radiation	36
	2.3.1	Ozone layer and ultraviolet radiation	38
	2.3.2	Effects of ozone depletion	39
	2.3.3	Earth surface UVR dose	40
	2.3.4	Intraocular UVR dose	41
	2.3.5	Association between UVB exposure and cataract	42
2	2.4	Antioxidant defense systems in the lens	46
	2.4.1	Enzymatic systems	46
	2.4.2	Non-enzymatic systems	49
2	2.5	Melatonin as an antioxidant drug	50
	2.5.1	Structure and synthesis of melatonin	50
	2.5.2	Regulation of melatonin biosynthesis in the eye	50
	2.5.3	Safety of melatonin	51
	2.5.4	Melatonin as a protectant against UV-	53

induced oxidative stress

CHAPTER THREE

Materials and Methods

3.1	Experimental animals	58
3.2	Ultraviolet exposure parameters	59
3.3	Sample preparation	59
3.4	Quantitative analysis of total protein content for soluble lens protein	60
3.5	Colorimetric methods	62
3.5.1	Measurement of the total oxidant capacity (TOC)	62
3.5.2	Measurement of the total antioxidative capacity (TAC)	63
3.5.3	Measurement of Malondialdehyde (MDA)	63
3.5.4	Measurement of the calcium concentration	63
3.6	Ultraviolet spectroscopy	64
3.7	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)	64

3.8	Electrical conductivity	67
3.9	Refractive index measurements	68
3.10	Statistical Evaluation	69
	CHAPTER FOUR	
	Results	
4.1	Quantitative analysis of total protein content of soluble lens protein	71
4.2	Colorimetric measurements	71
4.2.1	Measurement of the total oxidant capacity (TOC)	71
4.2.2	Measurement of the total antioxidative	72
	capacity (TAC)	
4.2.3	Oxidative stress index (OSI)	73
4.2.4	Quantitative determination of malondialdehyde (MDA)	74
4.2.5	Measurement of the calcium concentration	75
4.3	Ultraviolet Spectroscopy for lens protein	81
4.4	Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE)	84

4.5	Measurements of electric conductivity of lens protein	87
4.6	The refractive index (RI)	92
	CHAPTER FIVE Discussion and conclusion	
	Discussion	94
	Conclusion	115
	Referances	117
	Arabic abstract	

	T A 0 TA	
	List of Figures	
(2.1)	The structure of the human eye	27
(2.2)	A cross section of an adult lens	27
(2.3)	Gross anatomy of the crystallin lens of the eye	29
(2.4)	Lens circulation	32
(2.5)	Lens transparency	34
(2.6)	Lens with cataract	35
(2.7)	Electromagnetic spectrum	37
(2.8)	Ozone-oxygen cycle in the ozone layer	39
(2.9)	Ozone layer depletion and its implication for UVR	40
(2.10)	UVR transmission to the eye	42
(2.11)	Mechanisms by which UVB induces cataract	45
(2.12)	The Glutathione Oxidation Reduction (Redox) Cycle	48
(2.13)	Structure and synthesis of melatonin	51
(2.14)	Oxidative stress-induced melatonin response	56
(2.15)	Mechanism of protection against UVB radiation by melatonin	57
(3.1)	Standard curve of total protein concentration	62
(3.2)	Application of protein samples in	66