COMPARATIVE STUDY ON PROTEIN EXPRESSION OF DRUG-METABOLIZING CYP1 FAMILY GENES FROM LAKE MANZALA

AHMED MOHAMED ABDO HAL

B.Sc. Agric. Sc. (Aquaculture), Suez Canal University, 2003 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2008

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Ain Sham University

COMPARATIVE STUDY ON PROTEIN EXPRESSION OF DRUG-METABOLIZING CYP1 FAMILY GENES FROM LAKE MANZALA

By

AHMED MOHAMED ABDO HAL

B.Sc. Agric. Sc. (Aquaculture), Suez Canal University, 2003M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2008

Under the supervision of:

Dr. Mohamed Abdel-Salam Rashed

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University. (Principal supervisor)

Dr. Aiman Hanafy Atta

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Abdel-Haleem Hegazy El-Kady

Researcher, National Institute of Oceanography and Fisheries

Approval Sheet

COMPARATIVE STUDY ON PROTEIN EXPRESSION OF DRUG-METABOLIZING CYP1 FAMILY GENES FROM LAKE MANZALA

By

AHMED MOHAMED ABDO HAL

B.Sc. Agric. Sc. (Aquaculture), Suez Canal University, 2003M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2008

This thesis for Ph.D. degree has been approved by:

Dr.	Said Abdel Salam Dora
	Prof. Emeritus of Genetics, Department of Genetics,
	Faculty of Agriculture, Kafrelsheikh University.
Dr.	Fatthy Mohamed Abdel-Tawab
	Prof. Emeritus of Genetics, Department of Genetics,
	Faculty of Agriculture, Ain Shams University
Dr.	Mohamed Abdel-Salam Rashed
	Prof. Emeritus of Genetics, Department of Genetics,
	Faculty of Agriculture, Ain Shams University

Date of Examination: 19 / 6 / 2013

ACKNOWLEDGEMENT

Firstly, I wish to express my great and sincere gratitude to **ALLAH** who gave me the prosperity and ability to achieve this work.

All thanks and utmost respect to my principle supervisor **Prof. Dr. Mohamed Abdel-salam Rashed** and **Prof. Dr. Aiman Hanafy Atta** professors in Genetics Department, Faculty of Agriculture, Ain Shams University, for facilitating this work, their continuous encouragement and their continuous support by the thesis requirements.

A sincere respect is offered to my **Prof. Dr. Safaa I. El-Deeb**, professor of genetics, Genetic Laboratory, National Institute of Oceanography and Fisheries (NIOF), for her continuous encouragement to finish this work.

I would like to express my great thanks to **Dr. Mohamed A. H. El-Kady**, laboratory of genetics, (NIOF), I thank him too much for assisting in methodology, also I pray God to give him good future.

My gratitudes are extended to **Dr. Mahmoud Sallam** and **Dr. Nouh Eyd Ahmed** Department of Genetics, Faculty of Agriculture, Ain Shams University, for their help in gel electrophoresis analysis.

I would like to thank **Dr. Afaf El-Menisy** Department of Plant pathology, Faculty of Agriculture, Ain Shams University, for her help in spectrophotometer measurements.

Great thanks and sincere gratitude to my family for their encouragement and continuous support.

ABSTRACT

Ahmed Mohamed Abdo Hal: Comparative Study on Protein Expression of Drug-Metabolizing CYP1 Family Genes From Lake Manzala. Unpublished Ph.D. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2013.

The cytochrome P450 superfamily (CYP) is a large and diverse group of enzymes that catalyze the oxidation of organic substances such as polycyclic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and aryl amines. Expression of cytochrome P4501A (CYP1A) has been measured as a biomarker for possible exposure to these pollutants. Using a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR), we estimated levels of CYP1A expression in *Oreochromis aureus* from five different locations of Lake Manzala: 1) El-Gamil, 2) El-Inaniya, 3) El-Sirw, 4) El-Bashtir and 5) El-Temsah during December 2011. The area of Al-Qanater was included as a reference site from Nile River. Higher levels of CYP1A gene expression and PAHs concentrations were observed in O. aureus collected from different locations of Lake Manzala than the reference site. The CYP1A gene was highly expressed in the liver of all fish populations followed by gills, testes, ovaries and muscles, respectively. Muscles expressed the least CYP1A gene among the tissues studied at Lake Manzala while the expression of CYP1A in muscles at the reference site was almost negative. At the location level, El-Gamil fish population exhibited the greatest CYP1A gene expression among the studied locations while CYP1A gene expression of El-Sirw fish population was higher in gills and muscles than El-Gamil fish population. Al-Qanater and El-Temsah fish exhibited the lower expression levels in all the organs studied. Higher levels of 11 compounds of PAHs were found in El-Gamil region, followed by El-Sirw, El-Bashtir, El-Inaniya, El-Temsah and Al-Qanater regions,

respectively. The correlation coefficient between PAHs and CYP1A expression of fish organs was positive and highly significant (p<0.05) while the correlation coefficient between PAHs and CYP1A expression of testes and ovaries was highly significant (p<0.01). The highest positive correlation was detected between gills and liver (p<0.01) however the correlation between testes and ovaries was significant (p<0.05). The obtained partial sequence of cDNA of O. aureus was 569 base pair. The phylogenetic tree based on cDNAs sequences of CYP1 of teleosts and mammalian species showed a closer relationship between CYP1A and CYP1D subfamily members than any CYP1B or CYP1C that resulted in the clustering of both subfamilies in one clade to be more correlated to each other than any CYP1B or CYP1C subfamily members. The tree clearly shows O. aureus CYP1A and O. niloticus CYP1A genes to be clustered together in the same branch showing more correlation to each other (86.8%). In conclusion, the results of the present study demonstrated that Q-RT-PCR protocol is a valuable tool and has a higher sensitivity in environmental assessment. This level of sensitivity offered by Q-RT-PCR has been used successfully of CYP1A gene expression as biomarker in Lake Manzala fish.

Key words: Q-RT-PCR, CYP1A gene expression, polycyclic aromatic hydrocarbons (PAHs), *O. aureus*, Lake Manzala, water pollution.

CONTENTS

LIST OF TABLES	V
LIST OF FIGURES	VII
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	6
1- Lake Manzala	6
2- Cytochrome P450 (CYP)	10
3- CYP1 family	12
4- Cytochrome P450 forms in fish	22
5- CYP1A subfamily	23
6- Mechanism of P450 gene induction	35
7- Molecular structure of P450s	36
8- Housekeeping genes (reference genes)	37
III- MATERIALS AND METHODS	39
Materials	39
1. Sample collection:	39
1.1. Organs sampling	40
Methods	40
1. Total RNA isolation (AGPC method):	40
1.1. Principle:	41
1.2. Reagents used	41
1.3. Protocol	41
2. Determination of total RNA concentration	43
3. Checking the integrity of total RNA	43
4. Protocol for formaldehyde gel electrophoresis	4.4

4.1 Reagents used	44
4.2 Gel preparation	44
5. Preparation of RNA samples for run	45
6. Primers designing	45
6.1. Primers designing for CYP1A	45
6.2. Primers designing for β -actin (internal control)	47
7. Quantitative Reverse Transcription Polymerase Chain	
Reaction (Q RT-PCR)	48
7.1. Principle of Competitive RT-PCR	48
7.1.1. Competitive RT-PCR Using an Internal Reference	
Template	48
7.2. Preparation of the RT-PCR assay	49
7.3. Reverse transcription and thermal cycling	49
8. Quantitave RT-PCR product electrophoresis stock	50
8.1. Stock solutions	50
8.1.1. Agarose gel buffer (5X Tris-borate (TBE)), pH 8.0:	50
8.1.2. Ethidium bromide dye	50
8.1.3. Polyacrylamide gel preparation	50
8.1.4. Separation on the 10% polyacrylamide	50
9. Polycyclic aromatic hydrocarbons (PAHs) analysis in	51
9.1. Extraction of water samples	51
9. 2. Column chromatography	
	52
9. 3. Sulphur removal	52
9. 4. Blank preparation	52
10. Sequence analysis:	53
10.1. Target Sequencing	53

10.2. Sequence alignment and phylogenetics	53
11. Statistical analysis:	54
IV. RESULTS AND DISCUSSION	55
1. Polycyclic aromatic hydrocarbons (PAHs) analysis in	
water samples	55
2. Extracting total RNA from tissues	60
2.1. Concentration and quality of total RNA concentration	60
2.2. Checking the integrity of total RNA.	61
3. CYP 1A and β -actin genes expression of fish populations	
at the different locations	62
3.1. El-Gamil population	63
3.2. El-Sirw population	65
3.3. El-Bashtir population	67
3.4. El-Temsah population	69
3.5. El-Inaniya population	71
3.6. Al-Qanater Al-Khyria (Q) population	73
4. Comparison among the expression profile for organs of	
fish populations based on Gelanalyzer program	75
5. Comparison among organs for fish populations using	
concentration measurements	77
6. Comparison among populations based on fish organs6.1. CYP1A gene expression in liver among studied	81
populations:	82
6.2. CYP1A gene expression in gills among studied	
populations	83
6.3. CYP1A gene expression in muscles among studied	
populations	83

6.4. CYP1A gene expression in testes among studied	
populations	84
6.5. CYP1A gene expression in ovaries among studied	
populations	85
7. Comparison among the different populations using the	
expression profile of organs based on Gelanalyzer	
program	86
8. Comparison among the different populations using the	
expression profile of organs based on concentration	
measurements.	89
9. The correlation coefficient between Gelanalyzer program	
and spectrophotometric measurements	91
10. The relationship between CYP1A gene expression of	
organs and PAHs concentrations	92
11. Sequencing of partial sequence of CYP1A mRNA of	
Oreochromis aureus	94
12. Alignment of partial sequence of CYP1A mRNA of O .	
aureus and O. niloticus	97
V- SUMMARY	102
VI- REFERENCES	
ARARIC SUMMARY	106

LIST OF TABLES

1.	Sequences, start, stop and GC % contents of used CYP1A primer for competitive RT-PCR.	47
2.	Sequences, start, stop and GC % contents of used β -actin primer for competitive RT-PCR.	47
3. 4.	The analysis of Water samples by a Hewlett Packard 5890 series II Gas Chromatograph (concentration unit is $\mu g/l$). The concentration of total RNA by A_{260} reading of	59
	spectrophotometer of organs.	60
5.	The concentration of CYP1A gene expression of organs for El-Gamil population using Gelanalyzer program (ng/0.15 μ l) and spectrophotometric measurements (ng/ μ l).	64
6.	The concentration of CYP1A gene expression of organs for El-Sirw population using Gelanalyzer program (ng/0.15 μ l) and spectrophotometric measurements (ng/ μ l).	66
7.	The concentration of CYP1A gene expression of organs for El-Bashtir population using Gelanalyzer program (ng/0.15 μ l) and spectrophotometric measurements (ng/ μ l).	68
8.	The concentration of CYP1A gene expression of organs for El-Temsah population using Gelanalyzer program (ng/0.15 μ l) and spectrophotometric measurements (ng/ μ l).	70
9.	The concentration of CYP1A gene expression of organs for El-Inaniya population using Gelanalyzer program (ng/0.15 μ l) and spectrophotometric measurements (ng/ μ l).	72

10.	The concentration of CYP1A gene expression of organs for	
	Al-Qanater population using Gelanalyzer program	
	$(ng/0.15\mu l)$ and spectrophotometric measurements (ng/ $\!\mu l).$	74
11.	The correlation between Gelanalyzer program and	
	spectrophotometer analysis.	91
12.	The correlation between PAHs concentration and CYP1A	
	gene expression.	93
13.	Percentage identities of DNAs sequences of CYP1A, CYP1D,	
	CVP1R and CVP1C gene subfamilies	08

LIST OF FIGURES

1.	AHR-mediated expression of CYP1A gene	36
2.	Location of sampling sites in Lake Manzala. 1: El-Inaniya, 2: El-Sirw, 3: El-Temsah, 4: El-Gamil, 5: El-Bashtir and 6: Al-Qanater.	39
3.	The phenotypic characteristics of the <i>Oreochromis</i> aureus that used as a model to measure the expression of CYP1A gene at Lake Manzala.	40
4.	Graphical summary on Conserved Domain of CYP superfamily.	46
5.	Polycyclic aromatic hydrocarbons (PAHs) analysis by GC-FID in water of El-Gamil region.	55
6.	Polycyclic aromatic hydrocarbons (PAHs) analysis by GC-FID in water of El-Sirw (a) and El-Bashtir (b) regions.	56
7.	Polycyclic aromatic hydrocarbons (PAHs) analysis by GC-FID in water of El- Temsah (a) and El- Inaniya (b) regions.	57
8.	Polycyclic aromatic hydrocarbons (PAHs) analysis by GC-FID in water of Al-Qanater region.	58
9.	Total RNA extracted from liver and gills incubated with 100% ethanol (a) and total RNA extracted from organs stored at normal saline 0.9% (b). Position of 28S and 18S	30
	ribosomal RNA is indicated by the arrows.	61
10.	Representative electrophoretic patterns of Q-RT-PCR for liver (L), gills (G), muscles (Mn), testes (Y) and ovaries (X) taken from wild <i>O. aureus</i> of El-Gamil population.	
	M: DNA standard marker.	63

11.	Representative electrophoretic patterns of Q-RT-PCR for	
	liver (L), gills (G), muscles (Mn), testes (Y) and ovaries	
	(X) taken from wild O. aureus of El-Sirw population. M:	
	DNA standard marker.	65
12.	Representative electrophoretic patterns of Q-RT-PCR for	
	liver (L), gills (G), muscles (Mn), testes (Y) and ovaries	
	(X) taken from wild O. aureus of El-Bashtir population.	
	M: DNA standard marker.	67
13.	Representative electrophoretic patterns of Q-RT-PCR for	
	liver (L), gills (G), muscles (Mn), testes (Y) and ovaries	
	(X) taken from wild O. aureus of El-Temsah population.	
	M: DNA standard marker.	69
14.	Representative electrophoretic patterns of Q-RT-PCR for	
	liver (L), gills (G), muscles (Mn), testes (Y) and ovaries	
	(X) taken from wild O. aureus of El-Inaniya population.	
	M: DNA standard marker.	71
15.	Representative electrophoretic patterns of Q-RT-PCR for	
	liver (L), gills (G), muscles (Mn), testes (Y) and ovaries	
	(X) taken from wild O. aureus of Al-Qanater population.	
	M: DNA standard marker.	73
16.	Log mean number of CYP1A transcripts of total RNA	
	from El-Gamil (a) and El-Sirw (b) populations of <i>O</i> .	
	aureus.	75
17	Log man number of CVD1A transquints of total DNA	13
17.	Log mean number of CYP1A transcripts of total RNA from El Pashtir (a) El Tomseh (b) El Ingriya (c) and	
	from El-Bashtir (a), El-Temsah (b), El-Inaniya (c) and Al-Qanater (d) populations of <i>O. aureus</i> .	
	· · · · · · · · · · · · · · · · · · ·	76
18.	Log mean number of CYP1A transcripts of total RNA	
	from El-Gamil populations of O. aureus.	77
19.	Log mean number of CYP1A transcripts of total RNA	

	from El-Sirw (a), El-Bashtir (b) and El-Temsah (c)	
	populations of O. aureus using spectrophotometer.	78
20.	Log mean number of CYP1A transcripts of total RNA	
	from El-Inaniya (a) and Al-Qanater (b) populations of O.	
	aureus based on spectrophotometer.	79
21.	Electrophoretic patterns of Q-RT-PCR of liver of O. aureus	
	from El-Bashtir (B), El-Inaniya(E), El-Gamil (G), El-Sirw(S),	
	El-Temsah (T) and Al-Qanater Al-Khyria (Q) populations. M:	
	DNA standard marker.	82
22.	Electrophoretic patterns of Q-RT-PCR of gills of O.	
	aureus from El-Bashtir (B), El-Inaniya(E), El-Gamil (G),	
	El-Sirw(S), El-Temsah (T) and Al-Qanater Al-Khyria	
	(Q) populations. M: DNA standard marker.	83
23.	Electrophoretic patterns of Q-RT-PCR of muscles of O.	
	aureus from El-Bashtir (B), El-Inaniya(E), El-Gamil (G),	
	El-Sirw(S), El-Temsah (T) and Al-Qanater Al-Khyria	
	(Q) populations. M: DNA standerd marker.	84
24.	Electrophoretic patterns of Q-RT-PCR of testes of O.	
	aureus from El-Bashtir (B), El-Inaniya(E), El-Gamil (G),	
	El-Sirw(S), El-Temsah (T) and Al-Qanater Al-Khyria	
	(Q) populations. M: DNA standerd marker.	85
25.	Electrophoretic patterns of Q-RT-PCR of ovaries of O.	00
	aureus from El-Bashtir (B), El-Inaniya(E), El-Gamil (G),	
	El-Sirw(S), El-Temsah (T) and Al-Qanater Al-Khyria	
	(Q) populations. M: DNA standerd marker.	86
26.	Log mean number of CYP1A transcripts of total RNA	
	from liver (a) and gills (b) of <i>O. aureus</i> .	87
27	Log mean number of CYP1A transcripts of total RNA	
27.	from muscles (a) and gonads (b, c) of <i>O. aureus</i> .	88
	nom muscles (a) and gonads (0, c) of o. aureus.	00