EVALUATION OF THE USE OF DIFFERENT TECHNIQUES OF MAMMOPLASTY IN THE MANAGEMENT OF EARLY BREAST CANCER

Thesis

Submitted for Partial Fulfillment of M.D. Degree *in General Surgery*

By

Gihan Adly Al Sayed Abd El Moteleb

M.B., B.Ch, Alex. Master of Surgery, Ain Shams University (2007)

Supervisors

Prof. Dr. Alaa Abd Allah Farrag

Professor of General Surgery Faculty of Medicine - University of Ain Shams

Prof. Dr. Nabil Sayed Saber

Professor of General Surgery Faculty of Medicine - University of Ain Shams

Prof. Dr. Nasser Ahmed Ghozlan

Professor of Plastic and Reconstructive Surgery Faculty of Medicine - University of Alexandria

Faculty of Medicine Ain Shams University 2016

First and foremost, I thank **GOO** for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to **Prof. Dr. Alaa**Abd Allah Farrag, Professor of General Surgery, Faculty of

Medicine - University of Ain Shams, firstly for giving me the honor

to be his student and for his great support and stimulating views.

I would like **Prof. Dr. Nabil Sayed Saber**, Professor of General Surgery, Faculty of Medicine - University of Ain Shams, , his active, persistent guidance and other whelming kindness have been of great help through this work.

Also I would like to extend my warmest gratitude to **Prof. Dr.**Nasser Ahmed Ghozlan, Professor of Plastic and Reconstructive

Surgery, Faculty of Medicine - University of Alexandria, his hard and faithful efforts have helped me to do this work.

Also I would like to thank my **Family** who stood behind me to finish this work and for their great support.

🙇 Gihan Adly Al Sayed Abd El Moteleb

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the work	6
Review of Literature	
• Anatomy	7
• Breast Conservative surgery	35
• Oncoplastic Breast Surgery	45
• Therapeutic Mammoplasty	56
Patient & methods	83
Results	115
Discussion	158
Summary	179
Conclusion	
Recommendations	184
References	187
Arabic Summary	

Tist of Abbreviations

Table No.	Title	Page No.
BCS	Breast Concervative Surgery	
DCIS	Ductal Carcinoma In Situ	
OPS	Oncoplastic Breast Surgery	
IMF	Infra Mammary Fold	
NAC	Nipple Areola Complex.	
BIRADS	Breast Imaging Reporting And Da	ata System
BWM	Batwing Mammoplasty	
SLNB	Sentinel Lymph Node Biopsy	
MRI	Magnetic Resonance Imaging	
TDAP	Thoracodorsal Artery Perforator f	lap
FNAC	Fine Needle Aspiration Cytology	

List of Tables

Table No.	Title Page (No.
Table (1):	Segments of the breast	9
Table (2):	The studied group presented according to the personal	
	data and clinical presentation	116
Table (3):	The studied group presented according to general and	
	breast examination.	121
Table (4):	The studied group according to site of tumor, tumor size,	
	skin affection and tumor grade	123
Table (5):	The studied group presented according to surgical	
	technique, separate axillary incision, contra lateral	
	procedure and skin take out.	127
Table (6):	The studied group presented according to oncological	
	information	147
Table (7):	The studied group presented according to the incidence	
	of complications.	151
Table (8):	The studied group presented according to shape score,	
	NAC score, symmetry score and patient satisfaction	
	score.	154

List of Figures

Fig. M	o. Title Page No.	
Fig. (1):	Most plastic surgeons prefer to set the nipple exactly at the inframammary fold level	8
Fig. (2):	Widened areola after peri-areolar augmentation mastopexy	9
Fig. (3):	Segments of the female breast—lateral view	10
Fig. (4):	Segments of the female breast-antroposterior view	11
Fig. (5):	The fascia splits to form an anterior(superficial) and posterior(deep) lamellae to envelop the breast	12
Fig. (6):	The ligamentous suspension in anatomical dissection of the right breast seen from craniomedial.	15
Fig. (7):	The horizontal fibrous septum seen from medially in anatomical dissection of left breast	18
Fig. (8):	Three main arterial routes supplying the breast:24	
Fig. (9):	Injection study on cadavers shows communicating branches of internal mammary and lateral thoracic vessels	24
Fig. (10):	Blood supply of the breast	25
Fig. (11):	Schematic drawing of breast and anterior and lateral cutaneous branches of fourth intercostal nerve innervating the nipple and areola	29
Fig. (12):	Routes of lymphatic drainage of the breast	
Fig. (13):	Levels of axillary lymph nodes	
Fig. (14):	Type I deformity after BCS	
Fig. (15):	Type II deformity after BCS	
Fig. (16):	Type III deformity after BCS	44
Fig. (17):	Arterial anatomy of the breast.	58
Fig. (18):	Innervation of the breast	58
Fig. (19):	Various pedicles for the nipple-areola complex	59
Fig. (20):	Selection of Oncoplastic Breast Surgery technique according to tumor location	66
Fig. (21):	Inverted-T mammoplasty for inferior quadrant tumours	68
Fig. (22):	Inferior-pedicle mammaplasty for supra-areolar tumours	
Fig. (23):	Vertical reduction.mammoplasty	71

Tist of Figures $_{(Cont...)}$

Fig. W	o. Title P	age No.
Fig. (24):	Vertical mammoplasty	72
Fig. (25):	J-mammoplasty technique	73
Fig. (26):	Periareolar technique for tumours close to the areola	74
Fig. (27):	Lateral mammoplasty for tumors of the lateral quadrants	76
Fig. (28):	Omega mammoplasty	78
Fig. (29):	Medial mammoplasty technique with NAC repositioning	; 80
Fig: (30)	IMF mammoplasty	82
Fig. (31):	Marking the breast meridian.	87
Fig. (32):	Marking the new nipple position	88
Fig. (33):	Measuring the length of the inframammary fold	91
Fig. (34):	Marking of the medial limb	92
Fig. (35):	Wire keyhole pattern	92
Fig. (36):	The completed pattern.	93
Fig. (37):	Completed markings –the patient upright before the Open	ration 93
Fig. (38):	Inferior pedicle mammoplasty	95
Fig. (39):	Inferior-pedicle mammoplasty for supra-areolar tumors.	96
Fig. (40):	Volume displacement technique with reduction mammop	olasty 95
Fig. (41):	Sperior pedicle therapeutic mammoplasty	98
Fig. (42):	Sperior pedicle therapeutic mammoplasty	99
Fig. (43):	Donut mammoplasty.	100
Fig. (44):	Donut mammoplasty.	101
Fig. (45):	Round block technique	102
Fig. (46):	Donut mastopexy lumpectomy	102
Fig. (47):	Batwing mammoplasty.	104
Fig. (48):	The batwing mastopexy:	104
Fig. (49):	Batwing mammoplasty	105
Fig. (50):	Lateral mammoplasty.	107
Fig. (51):	Racquet mammoplasty	107
Fig. (52):	Lateral mammoplasty	108
Fig. (53):	J mammoplasty.	110

Tist of Figures $_{(Cont...)}$

Fig. W	lo. Title Page No	y.
Fig. (54):	Distribution of patients' obesity	. 117
Fig. (55):	Distribution of the side of the tumour.	. 118
Fig. (56):	Distribution of patients according to breast size	. 118
Fig. (57):	Degrees of ptosis.	. 119
Fig. (58):	Distribution of patients according to degree of ptosis	. 120
Fig. (59):	Distribution of patients according to site of the tumour	. 122
Fig. (60):	Distribution of patients according to surgical techniques	. 125
Fig. (61):	J mammoplasty	. 127
Fig. (62):	Technique of J shape mammoplasty.	. 128
Fig. (63):	The technique of superior pedicle reduction mammoplasty	. 129
Fig. (64):	The technique of superior pedicle reduction mammoplasty	. 130
Fig. (65):	The technique of inferior pedicle reduction mammoplasty	. 131
Fig. (66):	Inverted T inferior pedicle mammoplasty	. 132
Fig. (67):	Inverted T inferior pedicle mammoplasty	. 132
Fig. (68):	Inverted T inferior pedicle mammoplasty	. 133
Fig. (69):	Inverted T inferior pedicle mammoplasty	. 133
Fig. (70):	Lateral mammoplasty	. 134
Fig. (71):	Lateral mammoplasty	. 135
Fig. (72):	Lateral mammoplasty	. 135
Fig. (73):	Lateral mammoplasty	. 136
Fig. (74):	Batwing mammoplasty	. 137
Fig. (75):	Batwing mammoplasty	
Fig. (76):	Batwing mammoplasty	. 139
Fig. (77):	Round block technique	. 140
Fig. (78):	Round block technique	. 141
Fig: (79):	Round block technique	142
Fig: (80):	Round block technique	143
Fig. (81):	Dry specimen weight was recorded using a digital scale	
Fig. (82):	Specimen volume was recorded using fluid displacement	
Fig: (83)	Round block technique complicated with hematoma	. 147

Tist of Figures (Cont...)

Fig. M	o. Title	Page No.
Fig. (84):	A case of lateral mammoplasty complicated w	ith seroma, 148
Fig. (85):	Minor skin dehiscence	148
Fig. (86):	Superficial wound infection	149
Fig. (87):	Superficial wound infection.	149
Fig. (88):	Radiotherapy effect.	150
Fig: (89):	Radiotherapy effect	150
Fig. (90):	Distribution of the incidence of complications.	151
Fig. (91):	Distribution of shape score	155
Fig. (92):	Distribution of N A C score.	155
Fig. (93):	Distribution of symmetry score	156
Fig. (94):	Distribution of patient satisfaction score	156
Fig. (95):	Batwing mammoplasty with satisfying result	157
Fig. (96):	Lateral mammoplasty with very satisfying resu	lt 157
Fig. (97):	Batwing mammoplasty with disappointing resu	ılt 157
Fig. (98):	J mammoplasty with satisfying results	157

INTRODUCTION

Breast cancer is the most frequently diagnosed non dermatological malignancy in women and ranks second only to lung in cancer-related deaths (American Cancer Society, 2011).

While the incidence has increased over the past decade, the mortality rate of breast cancer has gradually declined; this improved survival may stem from earlier detection as well as improved therapies (Howlader et al., 2010).

A multidisciplinary approach is now standard of care, involving a coordinated effort with the surgeon working in concert with the medical and radiation oncologist to achieve the best possible outcome for each individual. Improvements in both the quality and quantity of life for victims of breast cancer can be attributed to the advances made in each of these disciplines. As with all cancers, earlier stage disease is more readily manageable than after significant advancement. It is these early-stage cancers in which the most significant improvements in the operative management has occurred (Rostas et al., 2012).

Surgical resection was the first effective treatment for breast cancer and remains the most important treatment modality for curative intent. Refinements in operative techniques along with the use of adjuvant radiotherapy and advanced chemotherapeutic agents have facilitated increasingly focused

breast cancer operations. Thus, surgical management of breast cancer has shifted from Extensive and highly morbid procedures, to the modern concept obtaining the best possible cosmetic result in tandem with the appropriate oncological resection (Rostas et al., 2012).

Breast conservative surgery (BCS) has become the standard for early stage breast cancer and is increasingly used in ductal carcinoma in situ (DCIS) (Jakesz et al., 2003and Doridot et al., 2004).

Its main objective is to provide a treatment as effective as mastectomy, but with the added benefit of a preserved breast. However, it is sometimes difficult to achieve good cosmetic results, especially with large, ill-defined or poorly situated tumors (Clough et al., 2003).

A surgical dilemma in BCT arises, on the one hand the surgeon needs a wider excision to provide clear margins and better local control of disease, but on the other hand the surgeon wants to spare as much tissue as possible for defect closure and to make the resulting aesthetic outcome as favorable as possible (Hamdi et al., 2007 and Dillon et al., 2006).

Oncoplastic surgery is a rather new concept; it combines breast conservative treatment with plastic surgery techniques for a better cosmetic outcome. It allows wider excision of the tumor and at the same time the preservation of symmetry by immediate

reconstruction. It has both oncological and psychological benefits. Four features define oncoplastic surgery: appropriate surgery to extirpate cancer, partial reconstruction to correct wide excision defects, immediate reconstruction with the full range of available techniques, and correction of asymmetry relative to the contralateral breast (Baildam, 2002 and Rew, 2003).

Additionally, in some circumstances oncoplastic techniques may allow a more radical tumor excision, which potentially reduces margin involvement. The capacity to remove a wider margin may be significant in certain groups of patients such as those with ductal carcinoma in situ and larger tumors that would usually be treated by radical surgery (Asgeirsson et al., 2005).

Several important basic points are crucial to obtain a pleasing outcome; the right technique to resect the cancer with immediate reconstruction using the appropriate technique, and the management of contralateral breast. All of these require careful planning with respect to the undermining and placement of the incisions (Munhoz et al., 2007).

Despite this appropriate management, the esthetic outcome depends on various factors, including the size and location of the lesion and the size of the original breast (Rostas and Dyess, 2012).

Additionally there is common agreement that the surgical deformities are best treated immediately following tumor resection. This is because it is more complicated to correct soft tissue deformities after radiotherapy (Clough et al., 2003).

To date, there is no consensus concerning the best procedure for conservative breast surgery. The main advantages of the technique should include reproducibility and low interference with the oncologic treatment. Probably, these goals are not achievable by any single procedure and each technique has its advantages and limitations (Clough et al., 1999).

A range of methods of parenchyma displacement techniques have been described, simple reshaping is performed by widely undermining nearby skin and the breast gland off the chest wall. The breast defect is then closed in full thickness (Slavin and Halperin, 2004).

Although satisfactory results may be achieved with the above mentioned techniques, reduction mammoplasty may lead to better results in patients with macromastia (Munhoz et al., *1999*).

According to breast volume, presence of ptosis, tumor size and location, we can choose the appropriate reduction technique for each case (Munhoz et al., 2007).

There has been no consensus regarding the best mammoplasty technique. Each presents particular advantage for their indication, tumor location limitations, vascular pedicle, additional skin and glandular resections due to compromised margins, and resultant scar (Munhoz et al., 1999).

The basic requirement for safety in breast conservative surgery is the adequacy of resection and the ability to achieve negative margins. We need to verify whether modern oncoplastic techniques can fulfill this requirement of safety while immediate reconstruction of defects can improve esthetical outcomes as well (Newman et al., 2001).

Concerns about the increased rate of complications after oncoplastic procedures are raised on the account of Glandular necrosis which is the most challenging complication. Aggressive undermining of both the skin envelope and gland from the pectoralis muscle can lead to glandular necrosis if the breast is fatty. Areas of fat necrosis can become infected and cause wound dehiscence resulting in postoperative treatment delay. Longer scars, increased procedure time, efforts and costs are also related. The need for a specialized plastic surgeon and training and finally the need to reconstruct the other breast are potential issues that need to be declared (Clough et al., 2003).