

The Potential Role of Triacontanol in Certain Physiological Aspects of *Zea mays* L. Single Cross Giza 310 Grown Under Normal and Environmental Stress Conditions

Thesis Submitted for the Degree of Doctor of Philosophy of Science in Botany (Physiology)

By **Heba Metwally Hassan Hassan**

B.Sc. (2001) - Botany M.Sc. (2008) - Botany (Plant Physiology)

Ain Shams University Faculty of Science Botany Department

2013

The Potential Role of Triacontanol in Certain Physiological Aspects of *Zea mays* L. Single Cross Giza 310 Grown Under Normal and Environmental Stress Conditions

Thesis Submitted for the Degree of Doctor of Philosophy of Science in Botany (Physiology)

By

Heba metwally Hassan Hassan

B.Sc. (2001) - Botany M.Sc. (2008) - Botany (Plant Physiology)

Supervisors

Prof.Dr. Azza M.Saber El-Shafey

Professor of Plant Physiology, Botany Department Faculty of Science, Ain Shams University

Prof. Dr. Hala Fattouh Sayed

Professor of Plant Physiology, Botany Department Faculty of Science, Ain Shams University

> Ain Shams University Faculty of Science Botany Department

> > 2013

Approval Sheet

Title of Thesis:

The Potential Role of Triacontanol in Certain Physiological
Aspects of Zea mays L. Single Cross Giza 310 Grown
Under Normal and Environmental Stress Conditions

Name of Student: Heba Metwally Hassan Hassan

Degree: Doctor of Philosophy of Science in Botany (Physiology)

This thesis has been approved by:

1.	Prof. Dr. El Husseiny Abd El Rahman Youssef
	Professor of Plant Physiology, Botany Department
	Faculty of Science, Cairo University
2	Prof. Dr. Safia Mohamed Ghazi.
4.	
	Professor of Plant Physiology, Botany Department
	Faculty of Science, Helwan University
3.	Prof.Dr. Azza M.Saber El-Shafey
•	Professor of Plant Physiology, Botany Department
	Faculty of Science, Ain Shams University
4.	Prof. Dr. Hala Fattouh Sayed
	Professor of Plant Physiology, Botany Department
	Faculty of Science, Ain Shams University

Prof. Dr. Mohamed El-Said Tantawy

Head Department of Botany Faculty of Science Ain Shams University

• • • • • • • • • • •

بسم الله الرحمن الرحيم

صدق الله العظيم سورة البقرة: أية (32)

To the soul of my father

(May mercy be upon his soul)

To my mother and my husband

ACKNOWLEDGMENT

Firstly and Finally Thanks to Allah

I would like to express my sincere gratitude to Prof. Dr. Azza M. Saber El-Shafey, Professor of plant physiology, Faculty of Science, Ain Shams University, and Prof. Dr. Hala Fattouh Sayed Professor of plant physiology, Botany Department, Faculty of Science, Ain Shams University, for suggesting the point of this study and for their continuous support, kind supervision, fruitful discussions throughout this work.

I am specially grateful to **Prof. Dr. Mohamed El-Said Tantawy**, Head of Botany Department, Faculty of Science, Ain Shams University, for his encouragement and valuable help.

My thanks are also to all staff members in Botany Department, Faculty of Science, Ain Shams University, with special appreciation to Hebatollah Ahmed Ali for their help and support throughout my work.

I am also greatly indebted to my family, specialy to my mother, my husband and my daughters Maya and Login.

ABSTRACT

Through investigating the physiological roles of triacontanol (TRIA) in seed germination, two different concentrations (35 and 50 ppm) were choosen based on a pilot experiment. On the basis of the results obtained, the relatively low applied concentration of TRIA enhanced Zea mays L. (Z. mays) seed germination via activating major biochemical activities and increasing hormonal content. Also, TRIA via increasing the percentage of unsaturated fatty acids, thus conferring a suitable geometry to lipid molecules, maintaining a degree of fluidity of cell membranes, had decreased the severity of imbibitional injury induced directly upon contact of dry seeds with water. A reverse trend was observed upon applying the relatively high concentration of TRIA. TRIA-treated seedlings contained three unique protein bands, one of them functions as lipoxygenase inhibitor. Soil treatment with three levels of CdCl₂ (10, 20, 200 ppm) greatly affected different growth attributes of Z. mays via retarding major biochemical activities, disrupting antioxidative systems, inducing hormonal imbalance and accumulation of Cd+2 in tissues. Interaction between Cd⁺² and TRIA (as grain priming or foliar spray) via increasing the metabolic activities of Cd-treated plants, alleviating syndrome of oxidative stress, restoring the hormonal balance might enhanced the growth of Cdtreated plants. TRIA, via increasing leaf content of cellulose, pectins and lignin, decreased the Cd+2 content of Z. mays. TRIA treatment either alone or in combination with Cd+2 enhanced growth, flowering and major fruiting attributes and decreased the percentage of incidence of formation of deformed and shrivelled grains of Z. mays, but having small size in interaction between Cd+2 and TRIA compared either with control or TRIA. There was a significant and non-significant increase in starch and oil contents of grains, respectively in response to TRIA applied alone or in combination with Cd⁺².TRIA succeed in decreasing the percentage of Z. mays plants subjected to infestation of Euprepocnemis plorans (Charp.).

LIST of Contents

Title	Page
ABSTRACT	
INTRODUCTION	1
Literature Review	7
Physiological roles of triacontanol (TRIA)	7
TRIA, seed germination and seedling growth	7
TRIA, growth and development, flowering and fruiting responses	8
TRIA and metabolic activities	13
Triacontanol roles under hostile habitats	17
Plant uptake of Cd ⁺² and factors affecting this process	20
Effects of cadmium on seed germination, growth and different cellular activities	22
Effect of cadmium on seed germination and growth	22
Effect of cadmium on cell membranes	27
Effect of cadmium on photosynthetic process	29
Effect of cadmium on respiration	31
Effect of cadmium on mineral uptake and transpiration	32
Cadmium and oxidative stress	34
Mechanisms of cadmium detoxification and tolerance	35

Roles of triacontanol in alleviating cadmium toxicity	38
MATERIAL and METHODS	41
A) Material	41
Preparation of triacontanol solution	41
B) Methods	41
Extraction, separation and determination of growth regulating substances using GC and HPLC	41
Extraction	42
Fractionation of plant extract	42
Methylation of plant hormones with diazomethane	43
Separation of methyl esters of plant hormones by Gas Chromatography	44
Identification and determination of auxins, gibberellins and abscisic acid contents	45
Identification and determination of cytokinin contents	45
Extraction and determination of certain metabolites	46
Extraction and estimation of photosynthetic pigments	46
Extraction and estimation of carbohydrates	47
Extraction procedure	47
Estimation of total soluble sugars	47

Estimation of sucrose	47
Estimation of polysaccharides	48
Estimation of starch	48
Extraction and estimation of nitrogenous constituents	49
Extraction and estimation of amino acids	49
Extraction	49
Estimation of amino acids	50
Reagents	50
Procedure	51
Estimation of total soluble nitrogen	52
Procedure	52
Extraction and estimation of nucleic acids	53
Procedure	53
Estimation of ribonucleic acid (RNA)	54
Estimation of deoxyribonucleic acid (DNA)	54
Extraction and determination of cadmium	55
Procedure	55
Extraction and estimation of malondialdehyde	55
Extraction and assaying activity of certain enzymes	56

Enzyme extraction	56
a) Superoxide dismutase(SOD.EC.1.12.1.1) assay	56
b) Catalase (CAT, EC 1.11.106) assay	57
c) Indole Acetic Acid oxidase (IAA oxidase) assay	58
d) Glutathione Reductase (GR) assay	59
Determination of protein banding pattern	59
Total protein extraction	59
Loading on a gel	60
Gel preparation	60
Sample loading	61
Electrophoresis conditions	61
Gel staining and destaining	61
Gel analysis	62
Extraction and determination of cellulose	62
Extraction and determination of pectins	63
Extraction and determination of lignin	64
Extraction and determination of oil	64
Experimental Results	66

A pilot experiment: Effect of soaking grains of Zea mays L. Giza 310 in different concentrations of triacontanol (TRIA) on germination and seedling growth	66
Time course experiment	66
Experiment 1:Effects of soaking Zea mays L. grains in TRIA on germination and seedling growth	67
Results	68
Change in percentage of germination of Z. mays L. grains	68
Change in major growth attributes of Z. mays L. seedlings	70
Metabolic features	70
Change in the content of major carbohydrate fractions of <i>Z. mays</i> L. seedlings	70
Change in the content of amino acids and total soluble nitrogen of <i>Z. mays</i> L. seedlings	74
Change in the content of total oils and its iodine value of <i>Z. mays</i> L. seedlings	74
Change in the content of nucleic acids of Z .mays L . seedlings	77
Change in the protein banding patterns of Z .mays L . seedlings	77
Change in the activity level of certain enzymes of <i>Z. mays</i> L. seedlings	81
Change in the activity level of lipase	81

Change in the activity level of IAA-oxidase	81
Change in the hormones content of Z. mays L. seedlings	83
Change in auxins content	83
Change in gibberellins content	83
Change in cytokinins content	83
Change in abscisic acid (ABA) content	85
Experiment II: Effect of grains soaking or foliage application of TRIA on growth of Zea mays L. plants grown under cadmium stress	85
Time course experiment	85
Experimental results	88
Effect of different concentrations of CdCl ₂ (10, 20, 200 ppm) applied alone or in combination with TRIA, 35 ppm (as spray S or grain-soaking G.S) on growth of <i>Zea mays</i> L. plants	88
Change in the content of carbohydrate fractions of <i>Z. mays</i> L. shoots	103
Change in carbohydrate fractions of Z. mays L. roots	106
Change in amino acids content of Z. mays L. shoots	106
Change in amino acids content of Z. mays L. roots	106
Change in nucleic acids content of Z. mays L. shoots	108
Change in nucleic acids content of Z. mays L. roots	108

Change in malondialdehyde content of Z. mays L. shoots	108
Change in malondialdehyde content of Z. mays L. roots	111
Change in the content of cadmium in roots and shoots of Z. mays L	111
Change in the content of cellulose of Zea mays L.leaves	111
Change in the content of pectins of Zea mays leaves	113
Change in the content of lignin of Zea mays leaves	113
Change in activity level of certain enzymes	113
Change in activity level of catalase of Z. mays L. shoots	113
Change in activity level of catalase of Z. mays L. roots	116
Change in activity level of superoxide dismutase of <i>Z. mays</i> L. shoots	116
Change in activity level of superoxide dismutase of <i>Z. mays</i> L. roots	116
Change in activity level of glutathione reductase of <i>Z. mays</i> L. shoots	117
Change in activity level of glutathione reductase of <i>Z. mays</i> L. roots	117
Change in the content of the endogenous growth regulators of <i>Zea mays</i> L. plants	118
Change in the content of indole acetic acid (IAA)	118
Change in the content of gibberellins (GA ₃)	118
Change in the content of cytokinins	118

Change in the content of abscisic acid (ABA)	120
Experiment III:Effect of TRIA applied alone or in combination with CdCl ₂ on growth, flowering and fruiting of <i>Zea mays</i> L. plants grown in the field	120
Time course experiment	120
Experimental results	123
Effect of triacontanol (TRIA) at 35 ppm, either alone or in combination with different concentrations of cadmium chloride (10, 20 or 200 ppm), on growth criteria of maize plants	123
Change in the content of photosynthetic pigments	136
Change in the content of cellulose of Zea mays leaves	142
Change in the content of pectin of Zea mays leaves	144
Change in the content of lignin of Zea mays leaves	144
Flowering and fruiting responses of Z. mays L.	144
Change in the content of starch of Zea mays grains	148
Change in the total lipids content of Zea mays grains	152
Effect of TRIA on susceptibility of Zea mays to Eurepocnemis plorans (Charp.) attack	152
DISCUSSION	154
SUMMARY	222