

Ain Shams University
Faculty of Medicine
Department of Anesthesia
And intensive care

## **ACUTE HEART FAILURE IN ICU**

### **Essay**

## Submitted for partial fulfillment of master degree of critical care medicine

**Presented By** 

## Alaa Abd EL-ALeem Kenawy

M.B.B.Ch

**Faculty of Medicine - Menoufia University** 

**Under Supervision of** 

## Prof. Dr. Samia Ibrahim Sharaf

Professor of Anesthesia & intensive care Faculty of Medicine, Ain Shams University

## Dr. Sanaa Farag Mahmoud

Lecturer of Anesthesia & intensive care Faculty of Medicine, Ain Shams University

### Dr. Hend Youssef Mohammed Ali

Lecturer of Anesthesia & intensive care Faculty of Medicine, Ain Shams University

Ain Shamas University Faculty of Medicine 2013



## فشل عضلة القلب الحاد داخل العنابة المركزة

مقدمة رسالة

توطئة للحصول على درجة الماجستير في العناية المركزة

مقدمه من

الطبيب / علاء عبد العليم عبد العزيز قناوي بكالوريوس الطب والجراحة - جامعة المنوفية

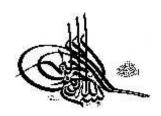
تحت إشراف

الأستاذ الدكتورة / ساميه إبراهيم شرف

كلية الطب – جامعة عين شمس

الدكتورة / سناء فرج محمود

مدرس التخدير والعناية المركزة


كلية الطب – جامعة عين شمس

الدكتورة / هند يوسف محمد على

مدرس التخدير والعناية المركزة

كلية الطب - جامعة عين شمس

كلية الطب - جامعة عين شمس



# قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صدق الله العظيم

سورة البقرة - آية ٣٢

## **CONTENTS**

## **Contents**

|   |                                               | Page |
|---|-----------------------------------------------|------|
| 1 | Introduction and Aim of the work              | 1    |
| 2 | Pathophysiology of acute heart failure in ICU | 4    |
| 3 | Risk factors & causes                         | 22   |
| 4 | Investigations and Diagnostic Modalities      | 35   |
| 5 | Management of acute heart failure in ICU      | 64   |
| 6 | summary                                       | 106  |
| 7 | References                                    | 109  |
|   | Arabic Summary                                |      |

### LIST OF FIGURES & TABLES

## LIST OF FIGURES

|                                                                                | Page |  |
|--------------------------------------------------------------------------------|------|--|
| Pathogenesis of HF                                                             |      |  |
| Compensated and decompensated HF                                               |      |  |
| Activation of the sympathetic nervous system                                   | 12   |  |
| Activation of the renin-angiotensin system                                     | 14   |  |
| The pattern of cardiac and cellular remodeling                                 | 18   |  |
| Ventricular Remodeling: Gross and Microscopic Architecture                     | 19   |  |
| Effect of changes in LV shape on LV wall stress                                | 20   |  |
| Echocardiographic images from a patient with cardiac                           |      |  |
| amyloidosis and severe diastolic dysfunction                                   |      |  |
| Cardiac MRI                                                                    |      |  |
| Cardiac MRI of two patients with heart failure                                 |      |  |
| Goals of treatment of the patient with AHF                                     |      |  |
| Initial management of patients presenting with AHFS                            |      |  |
| Algorithm for assessment and management of patients admitted with AHFS and CAD | 92   |  |

#### LIST OF FIGURES & TABLES

## LIST OF TABLES

|                                                      | Page |  |
|------------------------------------------------------|------|--|
| Mechanical Disadvantages Created by Left Ventricular |      |  |
| Remodeling                                           |      |  |
| Causes and precipitating factors in AHF              | 33   |  |
| Clinical Presentations of AHF                        | 36   |  |
| Grading of Congestion                                | 38   |  |
| Goals of treatment of the patient with AHF           | 65   |  |
| Pharmacologic Agents Used in Acute Heart Failure     |      |  |
| Syndromes                                            |      |  |
| Inotropic Agents Used in Acute Heart Failure         |      |  |
| Syndromes                                            | 82   |  |

**ACC** American College of Cardiology

**ACE** Angiotensin-converting enzyme

**Ach** Acetylcholine

**ACS** Acute Coronary Syndrome

**AF** Atrial fibrillation

**AHA** American Heart Association

**AHFS** Acute Heart Failure Syndrome

**AMI** Acute Myocardial infarction

**ANP** A trial Natriuretic Peptide

**AT**<sub>1</sub> Angiotensin type 1

**AT<sub>2</sub>** Angiotensin type 2

**ATP** Adenosine triphosphate

**BNP** Brain Natriuretic Peptide

**BP** Blood pressure

**CAD** Coronary artery disease

CCU Coronary care unit

**cGMP** Cyclic guanosine monophosphate

**CMA** Cardiac myosin activators

**CNP** C-type natriuretic peptide

**CNS** Central nervous system

**CPAP** Continuous positive airway pressure

**CSA** Central sleep apnea

CT Computed tomography

**CT** Computed tomography

**CXR** Chest x-ray

**DBP** Diastolic blood pressure

**E** Epinephrine

**ECG** Electrocardiogram

**ECM** Extracellular matrix

**ED** Emergency Department

**EF** Ejection fraction

**ESC** European Society of Cardiology

**ETT** Endotracheal intubation

**Fio**<sub>2</sub> Fraction of inspired oxygen

**HF** Heart Failure

**h-UCN2** peptide human urocortin 2

**ICDs** Implantable cardiac defibrillators

**IVC** Inferior vena cava

**JVP** Jugular venous pressure

**LA** Left atrium

LV Left Ventricle

**LVH** Left Ventricle hypertrophy

MIBG Metaiodobenzylguanidine

MRI Magnetic resonance imaging

**NE** Norepinephrine

Noninvasive intermittent positive-pressure

ventilation

**NIV** Non-invasive ventilation

NO Nitric oxide

**NOS** Nitric oxide synthase

**NP** Natriuretic Peptide

NT-

N-terminal pro Brain Natriuretic Peptide

proBNP

**NYHA** New York Heart Association

O<sub>2</sub>sat Oxygen saturation

**PAC** Pulmonary artery catheters

**PCWP** Pulmonary capillary wedge pressure

**PEEP** Positive end-expiratory pressure

**RA** Right atrium

**RAAS** Renin-angiotensin-aldosterone system

**RAS** Renin-angiotensin system

**ROS** Reactive oxygen species

**RV** Right Ventricle

S3 Third heart sound

S<sub>4</sub> Fourth heart sound

**SBP** Systolic blood pressure

**SERCA2a** | Sarcoendoplasmic reticulum Ca2+

**SERCA-2a** | Sarcoendoplasmic reticulum Ca<sup>2+</sup>-ATPase type 2a

**sGC** Soluble guanylate cyclase

SL Sublingual

**SNS** Sympathetic (adrenergic) nervous system

| UF  | Ultrafiltration             |
|-----|-----------------------------|
| -AR | -adrenergic receptors       |
| c   | Circumferential wall stress |
| m   | Meridional wall stress      |
|     | l                           |

#### **ACKNOWLEDGEMENTS**

First of all my deepest gratitude and extreme thanks to Allah the Most Greatful, the Most Merciful.

I would like to express my thanks, appreciation and profound gratitude to Professor *Dr.* Samia Ibrahim Sharaf, Professor of Anaesthesiology & Intensive Care, Faculty of Medicine, Ain Shams University, for her kind supervision, careful guidance, endless patience, great effort and continuous help throughout the course of this work.

I would like also to express my everlasting gratitude and sincere thanks to *Dr.* Sanaa Farag Mahmoud , Lecturer of Anaesthesiology & Intensive Care, Faculty of Medicine, Ain Shams University for her valuable advice, endless support, kind supervision, continuous encouragement and generous help throughout the whole work.

#### I wish to thank *Dr.* Hend Youssef Mohammed Ali

Lecturer of Anaesthesiology & Intensive Care, Faculty of Medicine, Ain Shams University, for her great help, suggestions, efforts, encouragement and support helped to put this work in its final shape.

Finally, my deepest thanks and gratitude are due to my father and mother for the considerable patience they have shown and the great care they have given so as to smooth the rough edge of this work.

Wishing this work be beneficial in the medical field, I hope it will satisfy you all.

## Introduction

Acute Heart Failure Syndrom (AHFS) is defined as gradual or rapid change in heart failure signs and symptoms resulting in a need for urgent therapy. These symptoms are primarily the result of severe pulmonary congestion due to elevated left ventricular filling pressures (with or without low cardiac output). AHFS can occur in patients with preserved or reduced ejection fraction .

Concurrent cardiovascular conditions such as coronary heart disease, hypertension, valvular heart disease, atrial arrhythmias, and/or noncardiac conditions (including renal dysfunction, diabetes, anemia) are often present and may precipitate or contribute to the pathophysiology of this syndrome (*Remme WJ and Swedberg K.*,2001).

The combination of the aging of the population in many countries, and improved survival after acute myocardial infarction has created a rapid growth in the number of patients currently living with chronic heart failure, with a concomitant increase in the number of hospitalizations for decompensated heart failure.

Coronary heart disease is the aetiology of AHF in 60–70% of patients, particularly in the elderly population. In younger subjects, AHF is frequently caused by dilated cadiomyopathy, arrhythmia, congenital or valvular heart disease, or myocarditis (*McCullough PA et al.*,2002).

Advanced heart failure and related acute decompensation have become the single most costly medical syndrome in cardiology. Patients with AHF have a very poor prognosis. Mortality is particularly high in patients with acute myocardial infarction accompanied by severe heart failure, with a 30% 12 month mortality. Likewise, in acute pulmonary oedema a 12% in-hospital and 40% 1 year mortality have been reported. About 45% of patients hospitalized with AHF will be rehospitalized at least once (and 15% at least twice) within twelve months (*Berry C et al.*, 2001).

AHF can present itself as acute de novo (new onset of acute heart failure in a patient without previously known cardiac dysfunction) or acute decompensation of chronic heart failure(*Cleland JG et al.*,2003).

The patient with acute heart failure may presentAcute decompensated heart failure (de novo or as decompensation of chronic heart failure), Hypertensive AHF, Cardiogenic shock, High output failure, Right heart failure.

AHF is a clinical syndrome, with reduced cardiac output, tissue hypoperfusion, increase in the pulmonary capillary wedge pressure (PCWP), and tissue congestion. The underlying mechanism may be cardiac or extra-cardiac, and may be transient and reversible with resolution of the acute syndrome, or may induce permanent damage leading to chronic heart failure (*Fox KF et al.*,2001).

The clinical AHF syndrome may be classified as predominantly left or right forward failure, left or right backward failure, or a combination of these.

The diagnosis of AHF is based on the symptoms and clinical findings, supported by appropriate investigations such as ECG, chest X-ray, biomarkers, and Doppler echo cardiography (*Krumholz HM et al.*,1998).

The immediate goals of treatment are to improve symptoms and to stabilize the haemodynamic condition. An improvement in haemodynamic parameters only may be misleading, however, and a concomitant improvement in symptoms (dyspnoea and/or fatigue) is generally required. These short-term benefits must also be accompanied by favourable effects on longer-term outcomes. This is likely to be achieved by avoidance, or limitation, of myocardial damage.

Mangment include medical therapy like :Oxygen and ventilatory assistance, diuretics, vasodilators, Anticoagulation, Angiotensin converting enzyme Inhibitors, *b*-blocking agents, Inotropic agents.

Or Mechanical assist devices and heart transplantation (Intra-aortic balloon counterpulsation, Ventricular assist devices, Heart transplantation) (*Krumholz MH P et al.*,2001).