Peripheral Blood Natural Killer CD16+ Level In Hepatitis C Virus Seropositive Prevalent Hemodialysis Patients

Thesis

Submitted for Partial Fulfillment of Master Degree In Internal Medicine

By

Eman Mohammed Taha

(M.B,B.Ch.)

Faculty of Medicine, Mansoura University

Supervisors Prof. Mohammed Ali Ibrahim

Professor of Internal Medicine & Nephrology And Head of Nephrology Department Faculty of Medicine - Ain Shams University

Prof. Afaf Abd El Alim Mostafa

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Heba Wahid El Said

Assistant professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

[البقرة:٣٢]

ACKNOWLEDGMENT

First of all and foremost, thanks are due to **Allah** at mighty who gives me everything I have.

I wish to express many sincere thanks and deepest gratitude to **Prof. Mohammed Ali Ibrahim**, professor of internal medicine, nephrology & head of nephrology department, Faculty of Medicine, Ain Shams university, for his great care, continuous supervision and kind guidance. He has been kind enough to orientate advice and teach me.

I am also deeply conscious for the continuous help offered to me by **Prof. Afaf Abd El Alim Mostafa**, professor of clinical pathology, Faculty of Medicine, Ain Shams university, whose directions helped to set my foot on the right track, and made the completion of this work possible.

Warm gratitude is paid to **Dr. Heba Wahid El Said**, Assistant professor of internal medicine & nephrology, Faculty of Medicine, Ain Shams university, for her keen supervision and cooperative guidance. She has been kindly and sincerely made to help me throughout this study.

CONTENTS

Introduction	1
Aim of the Work	4
Review of Literature	
HCV Infection	5
HCV and Natural killer Cells	22
Hemodialysis and Immunity	25
Immunity in HCV patients on hemodialysis	32
Hepatitis C Virus and Hemodialysis	35
Subjects and Methods	44
Results	50
Discussion	72
Summary & Conclusions	79
References	82
Arabic Summary	

List Of Tables

No	Title	Page			
Resu	Results				
1	Comparison between the demographic	50			
	characteristics in the studied groups				
2	Comparison between hemodialysis parameters in	52			
	the studied groups				
3	Comparison between the studied groups regarding	53			
	blood pressure measurements	55			
4	Comparison between the studied groups regarding				
	history of infection				
5	Comparison between the studied groups regarding	56			
	frequency of infections at follow up				
6					
	frequency of total infections				
7	Comparison between the studied groups regarding	60			
	the immunological parameters				
8	Correlations between the immunological	61			
	parameters and clinical and laboratory data in HD				
	group				
9	Correlations between the immunological	65			
	parameters and clinical and laboratory data in HCV				
	+ve group				
10	Correlations between the immunological	67			
	parameters and clinical and laboratory data in HCV				
	-ve group				
11	Correlations between the immunological	70			
	parameters and clinical and laboratory data in				
	control group				
12	Multivariate regression analysis	71			

List Of Figures

No	Title	Page	
1	Comparison between sex distribution in the studied 51		
	groups	31	
2	Comparison between blood pressure measurements	54	
	in the studied groups	54	
3	igher frequency of infections during the study		
	follow up in hemodialysis patients when compared	57	
	with controls.		
4	Higher frequency of infections during the study		
	follow up in hemodialysis patients when compared	59	
	with controls.		
5	Correlation between CD3 and Hb.	62	
6	Correlation between CD16+ and serum creatinin.	63	
7	Correlation between CD16+ and duration of HD in	64	
	mont.	04	
8	Correlation between CD3 and K.	66	
9	Correlation between CD3 and serum ferritin.	68	
10	Correlation between CD3 and serum creatinin.	69	

LIST OF ABBREVIATIONS

ALT	Alanine amino transferase
APCs	Antigen-presenting cells
AST	Aspartate amino transferase
BNHL	B-cell non-Hodgkin's lymphoma
Ca	Calcium
CBC	Complete blood count
СНС	Chronic hepatitis C
CRP	C reactive protein
CTLA-4	Cytotoxic T-lymphocyte antigen 4
DBP	Diastolic blood pressure
DL	Deci litre
DM	Diabetes mellitus
ELISA	Enzyme-linked immunosorbent assay
ESRD	End stage renal disease
FITC	Fluorescein isothiocyanate
G	Gram
НВ	Hemoglobin
HBV	Hepatitis B Virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HD	Hemodialysis
HIV	Human immunodeficiency virus
I D weight gain	Interdialytic weight gain

IFN	Interferon
K	Potassium
Kg	Kilo gram
L	Litre
LAG-3	Lymphocyte activation gene 3
LCMV	Lymphochoriomeningitis virus
LSM	Liver stiffness measurement
MC	Mixed cryoglobulinemia
mEq	Mili equivalent
MGUS	Monoclonal gammopathy of undetermined
	significance
MHC	Major histocompatibility complex
Mg	Mili gram
Na	Sodium
NANBH	Non-A, non-B hepatitis
NG	Nano gram
NIH	National Institutes of Health
NK	Natural killer cell
NKRs	Natural killer cell receptors
NS3	Nonstructural protein 3
PCR	Polymerase chain reaction
PD	Peritoneal dialysis
PD-1	Programmed death-1
PE	Phycoerythrin

PEG-IFN	Pegylated-interferon
Pg	Peco gram
PO4	Phosphorus
PTH	Parathyroid hormone
RBV	Ribavirin
RNA	Ribonucleic acid
SBP	Systolic blood pressure
SVR	Sustained virologic response
TCR	T cell Receptor
TMA	Transcription-mediated amplification
U	Unit

INTRODUCTION

Chronic hepatitis C virus (HCV) infection is the major etiology of chronic liver disease, liver cirrhosis, hepatic decompensation, hepatocellular cancer and liver transplantation (*Hunyady*, 2011).

HCV infection is the most common cause of acute or chronic hepatitis in patients on hemodialysis (HD) (*Galperim et al., 2010*). In hemodialysis patients, HCV infection has been associated with increased occurrence of cirrhosis and hepatocellular carcinoma and increased mortality (*Patel et al., 2010*).

Recent studies have shown that HCV positivity is associated with significantly higher cardiovascular mortality, especially in dialysis patients younger than 65 years (*Santoro et al.*, 2009).

Infections are the major cause of morbidity and the second cause of death following cardiovascular events in HD patients. It seems that the HD procedure

١

per se as well as disturbances in both innate and adaptive immunity significantly contribute to this susceptibility (*Eleftheriadis et al.*, 2011).

The innate and adaptive immune systems are suppressed by various kinds of mechanisms in HCV patients (*Kondo et al.*, 2011).

T-cell and natural killer (NK)-cell functions are impaired in HD patients (*Eleftheriadis et al.*, 2009). Chronic uraemia and HD treatment exert a negative effect on natural killer (NK) cells (CD3-, CD16+) count in the peripheral blood. Furthermore, The count of natural killer (NK) cells (CD3-, D16+) in the peripheral blood in patients with chronic renal failure treated with HD could be a prognostic marker of susceptibility to infections and malignancy (*Liszka et al.*,1998).

The presence of HCV infection in liver transplant recipients resulted in a significant increase in regulatory T cells and a decrease in activated T cells in comparison with HCV-negative liver transplant recipients. These 2 findings indicate a potentially important effect of HCV

on the immune system after transplantation through an increase in the suppressive role of regulatory T cells and/or a decrease in activated T cells (*Ciuffreda et al.*, 2010).

Approximately 80% of all renal transplant recipients have an infectious complication in the first year following transplantation (*Sousa et al., 2010*). HCV-positive patients had more frequent postoperative infections and potentially fatal infections of the central nervous system, lungs and blood stream (such as cytomegalovirus infection, tuberculosis, sepsis) (*Dominguez and Morales., 2009*).

However, no previous studies have assessed the effect of HCV seropositivity on intercurrent infection in HD patients.

۲

AIM OF THE WORK

The aim of this study is to assess the possible effect of HCV infection on the level of the peripheral blood NK CD16+ in prevalent HD patients and their association with intercurrent infection.

HCV INFECTION

Epidemiology

About 170 million people in the world are infected with hepatitis C virus (HCV). Since the discovery of HCV in 1989 (*Alter et al, 1999*), the number of acute HCV cases has fallen by more than 80% (*Wasley and Alter, 2000*). However, hepatitis C is still a major health burden because 60–80% of infected people progress to chronic infection (*Di Bisceglie, 2000*).

Importantly, many individuals are infected with both HIV and hepatitis C virus (HCV) infection. More rapid progression of liver disease is seen, higher levels of HCV RNA encourage transmission and sustained virological responses are lower in coinfected patients. The management of these patients is further complicated by potential interactions between antiretroviral therapy and peginterferon and ribavirin (Thomson and Main, 2008).

HCV is a single-stranded RNA virus belonging to the Flaviviridae family (*Lindenbach and Rice*, 2005). The major routes of transmission are injection drug use, blood transfusion, hemodialysis, organ transplantation and less frequently sexual intercourse. Six major genotypes (1–6) of HCV have been identified, and they have varying geographical distribution. Genotypes 1, 2 and 3 are distributed worldwide with genotype 1 accounting for 40–80% of all cases. Genotype 4 is found in the Middle East and Egypt, genotype 5 in South Africa and genotype 6 in South East Asia (*Wasley and Alter*, 2000).

Geographical trends of HCV genotypes

The geographical trends of HCV genotypes are shown as follow (*Bostan and Mahmood*, 2010).

Genotype 1: North and South America and in Australia. About 70% of the patients in United States are infected with genotype 1. Genotype 1a is common in United Kingdom. Genotype 1b is mostly found in Europe and Asia and is common in Japan. Studies show that genotype 1 is more resistant to therapy than genotype 2 and 3.