Immunohistochemical Expression of Beta-Catenin in Colorectal Adenocarcinoma

Thesis

Submitted for partial fulfilment of Master degree in

Pathology

By

Ghada Mohamed Reda Abouelfotouh

(MB BCh)

under supervision of

Prof. Dr. Maissa El-Maraghy

Professor of Pathology Faculty of Medicine Ain Shams University

Prof. Dr. Manal Mohamed El Mahdy

Professor of Pathology Faculty of Medicine Ain Shams University

Prof. Dr. Marwa Abdel Moneim El Shaer

Professor Researcher of Pathology National Research Center

> Faculty of Medicine Ain Shams University 2012

بسم الله الرحمن الرحيم

[قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم]

صدق الله العظيم سورة البقرة آية ٣٢

DEDICATION

To my beloved husband and my two beautiful children

Leena & Yahya

To soul of my father, mother, and sisters who gave me a lot of care, support during my whole life and until now

To soul of my father, who encouraged me a lot to finish this work

ACKNOWLEDGEMENT

First and foremost, I thank Allah, who gave me the strength to accomplish this work.

Words cannot express my sincere gratitude and appreciation to Prof. Maisa El-Maraghy, professor of pathology, Ain Shams University; it is honor to work under her supervision, her generous guidance, keen interest and precious time she offered me throughout this study. Her scientific advices were kindly given to me and are beyond acknowledgement.

I would like to express my sincere indebtedness and profound gratitude to, **Prof. Manal Elmahdy** professor of pathology, Ain Shams University, for her continuous guidance, valuable suggestions and keen supervision throughout work.

I wish also to express my deep gratitude to **Prof.**Marwa El Shaer, professor of pathology, National Research Center, for her continuous support, valuable remarks meticulous supervision and for offering me much of her time and effort throughout this study.

I wish also to express my deep gratitude to Dr. Nereen Elshafee assistant professor of pathology, National Research Center, for her continuous support, valuable remarks meticulous supervision and for offering me much of her time and effort throughout this study.

LIST OF CONTENTS

List of Tables	i
List of Figures	iii
List of Charts	v
List of Abbreviations	vi
Introduction	1
Aim of the work	3
Review of Literature	
Colorectal Carcinoma Pathology	4
Colorectal Carcinogenesis	39
Materials & & Methods	54
Results	58
Discussion	104
Conclusions	113
Summary	115
References	118
Arabic Summary	

LIST OF TABLES

Table	Description	Page
Table 1	Histologic features of CRC that should be noted in the pathology report	24
Table 2	Stage grouping in the TNM staging system	30
Table 3	Clinical characteristics of patients	59
Table 4	Grade of differentiation, Dukes' stage and location of the malignant tumors.	61
Table 5	Sub cellular expression distribution of β-catenin in benign & malignant cases	64
Table 6	β-catenin expression as staining intensity in benign lesions (Regardless the degree of dysplasia).	65
Table 7	β-catenin expression as staining intensity in malignant lesions.	66
Table 8	β-catenin expression as percent positivity in malignant lesions.	67
Table 9	Correlation between grade & nuclear expression staining intensity	70
Table 10	Correlation between grade & nuclear expression percent positivity	70

List of Tables

Table	Description	Page
Table 11	Relation between tumor grade and the nuclear expression as staining intensity and percent positivity and the trend of this correlation using Spearman's correlation.	71
Table 12	Correlation between stage & nuclear β -catenin expression staining intensity.	72
Table 13	Correlation between stage & nuclear β -catenin expression percent positivity.	73
Table 14	Correlation between tumor stage and nuclear expression as staining intensity & percent positivity using Pearson Chi-Square test.	73
Table 15	Correlation between stage group & nuclear expression staining intensity.	74
Table 16	Correlation between stage group & nuclear expression percent positivity.	75
Table 17	Correlation between stage group & nuclear expression as staining intensity & percent positivity using Pearson Chi-Square test.	75
Table 18	Correlation between tumor stage and nuclear expression as staining intensity & percent positivity using Spearman's and Kendall's correlation	76
Table 19	Correlation between stage group and nuclear expression as staining intensity & percent positivity using Spearman's and Kendall's correlation	76

LIST OF FIGURES

Figure	Description	Page
Fig 1	Adenoma - Carcinoma sequence	41
Fig 2	Tubular adenomatous polyp with mild dysplastic changes. (Hx&E, 200x)	77
Fig 3	β-catenin expression in tubular adenomatous polypi, showing strong membranous staining.	78
Fig 4	Tubulovillous adenoomatous polyp with moderate dysplastic changes. (Hx&E, 200x)	79
Fig 5	β-catenin expression in tubulovillous polypi with moderate dysplastic change.	81
Fig 6	Poorly differentiated adenocarcinoma Dukes' stage D.(Hx&E, 200x)	82
Fig 7	β-catenin expression in poorly differentiated adenocarcinoma Dukes' stage D.	84
Fig 8	Moderate differentiated adenocarcinoma Dukes' stage D.(Hx&E)	86
Fig 9	β-catenin expression in moderate differentiated adenocarcinoma Dukes' stage D.	88
Fig 10	Well differentiated adenocarcinoma Dukes' stage D. (Hx&E, 200x)	89

List of Figures

Figure	Description	Page
Fig 11	β-catenin expression in well differentiated adenocarcinoma Dukes' stage D.	91
Fig 12	Well differentiated adenocarcinoma Dukes' stage C. (Hx & E)	93
Fig 13	β-catenin expression in well differentiated adenocarcinoma Dukes' stage C.	95
Fig 14	Moderate differentiated adenocarcinoma Dukes' stage B. (Hx & E)	97
Fig 15	β-catenin expression in well differentiated adenocarcinoma Dukes' stage B.	99
Fig 16	Moderate differentiated adenocarcinoma Dukes' stage A. (Hx & E)	101
Fig 17	β-catenin expression in moderately differentiated adenocarcinoma Dukes' stage A.	103

LIST OF CHARTS

Chart	Description	Page
Chart 1	Pie chart showing the distribution of tumor Grade & Dukes' stage	60
Chart 2	Column chart showing the distribution of the site of the tumour	62
Chart 3	Sub cellular expression distribution of	64
	β-catenin in benign & malignant cases	
Chart 4	β -catenin expressions as staining intensity in malignant tumors.	67
Chart 5	β -catenin expression as percent positivity	68
	in malignant tumors.	

LIST OF ABBREVIATIONS

AJCC	American Joint Committee for Cancer
APC	Adenomatous Polyposis Coli
BMI	Body Mass Index
CIMP	CpG Island Methylator Phenotype
CIN	Chromosomal Instability
COX-2	Cyclooxygenase-2
CRA	Colorectal Adenoma
CRC	Colorectal Cancer
CTNNB1	Human Genome Organization-approved
	official gene symbol; catenin (cadherin-
	associated protein), β1]
DCC	Deleted in Colorectal Cancer
FAP	Familial Adenomatous Polyposis
HNPCC	Hereditary NonPolyposis Colorectal
	Cancer
IBD	Inflammatory Bowel Disease
LOH	Loss of Heterogenicity
MCC	Mutated in Colorectal Cancer
MMR	Mismatch Repair Genes

List of Figures

MSI	Microsatellite Instability
MSS	Microsatellite Stable
NCI	National Cancer Institute
RER	Replication Error
UICC	International Union for Cancer Control
WHO	World Health Organization

INTRODUCTION

Colorectal cancer is the fourth commonest malignant neoplasm after lung, breast and prostate; approximately 90% of colorectal cancers are derived from benign adenomatous lesions which are estimated to take 5–15 years to evolve into invasive cancer (*Watson*, 2006).

Colorectal cancer is the third leading cause of cancer deaths in Western countries. Between 20% and 50% of patients with colorectal cancer will die within five years of diagnosis, usually as the result of extensive metastatic disease. At the time of diagnosis, 20% of patients have metastases in the liver, the predominant metastatic site for colorectal cancer (*Backus et al, 2002*).

Beta-catenin is a component of stable cell adherent complexes whereas its free form functions as a transcription factor that regulate genes involved in oncogenesis and metastasis (*Xiao et al, 2003*).

Beta-catenin has two distinct functions, namely, maintaining cell-to-cell adhesion and mediating the Wnt/beta-