Recent Trends in Surgical Management of Flexible Pes Plannus

Essay

Submitted for partial fulfillment of master degree in orthopedic surgery

By

Heba Kamal Abass M.B.B.Ch

Under supervision of

Dr. Ayman Hussein Gouda

Assistant Professor of Orthopedic Surgery Faculty of Medicine
Ain shams University

Dr. Ahmed Naeem Atiyya

Lecturer of Orthopedic Surgery Faculty of Medicine Ain shams University

> Faculty of medicine Ain shams university 2013

List of Tables

No	Table	page
1	Differential Diagnosis of Flatfoot	50

List of Charts

No	Table	page
1	Diagnosis of Pediatric flatfoot	51
2	Treatment of Flatfoot	53
3	Treatment of Flatfoot	54

List of Figures

No	Figure	Page
1	Ligaments of the medial aspect of the foot	5
2	Oblique section of left intertarsal and tarsometatarsal	6
	articulations, showing the synovial cavities	
3	The joints in the foot with major functional significance	8
	during walking (black areas)	
4	skeleton of medial aspect of foot	9
5	Skeleton of lateral aspect of foot	10
6	Windlass mechanism	12
7	Initial contact posture of the ankle and alignment of the	15
	vector.	
8	Loading response pattern of motion, muscle control and	15
	vector alignment at the ankle	
9	Mid stance pattern of motion, muscle control and vector	16
<u> </u>	alignment at the ankle.	
10	Mid stance advancement of the vector over the foot as the	16
	ankle dorsiflexes.	
11	Terminal stance pattern of motion, muscle control and	17
	vertical alignment at the ankle	
12	Terminal stance dorsiflexion lever arm of the body vector.	17
13	Pre-swing pattern of motion, muscle control and vector	19
	alignment at the ankle	
14	Initial swing pattern of motion, muscle control and vector	19
<u> </u>	alignment at the ankle	
15	Mid swing limb advancement (arrow) continues the	20
	demand on the tibialis anterior	
16	Terminal swing advancement (arrow) of the tibia also	20
	presents a demand for tibialis anterior support of the foot	
	against the plantar force of gravity	
17	Loading response subtalar action.	22
18	Midtarsal joint reactions. Talonavicular and calcaneal	22
<u>il</u>	cuboid joint axes (dotted lines) parallel with subtalar	
	valgus.	
19	Metatarsophalangeal joint motion during stance. Shaded	23
	toe indicates area of motion	
20	The three anatomic regions of the foot	27

List of Figures

No	Figure	Page
21	Hyperpronation of the Foot	30
22	Clinical examination of the foot begins with non-weight	43
	bearing inspection.	
23	Local examination	44
24	Anteroposterior talus-first metatarsal angle	47
25	Lateral talus-first metatarsal angle	48
26	Weight-bearing lateral radiograph showing the	49
<u></u>	measurements used in the assessment of the results	
27	Wall exercises for calf stretching.	56
28	Towel-gathering exercise Towel-stretch exercise	56
29	The UCBL orthosis	60
30	Soft molded insert	60
31	Evans operation	67
32	Post-operative x-rays of calcaneal lengthening	69
33	Calcaneal lengthening	70
34	Modified Evans osteotomy.	73
35	A- Calcaneal lengthening osteotomy.	74
36	Tibialis anterior is identified	77
37	Cartoon illustrating ideal placement of internal fixation	79
38	Final radiographs of NC arthrodesis screw fixation	79
39	(A) Residual high postoperative talar-first metatarsal	84
1	angle as one indicator of undercorrection. (B) High	
1	postoperative calcaneocuboid abduction angle as one	
 _	indicator of residual transverse plane deformity	
40	Example of 2 different types of titanium cannulated, self-	88
1	locking wedge-type implants included in this study.	
41	Identification of tibialis anterior tendon	90
42	Resection of the hypertrophic navicular	91
43	Separating medial half of the tibialis anterior tendon	91
44	Split tibialis anterior tendon weaved several times	92
1	through the tibialis posterior tendon and sutured at each	
1	weave with vicryl sutures with foot in supinated position	
45	Cadaveric dissection	95
46	Cadaveric dissection	97

List of Abbreviation

ACFAS	: American College of Foot and Ankle Surgeons
AN	: Accessory Navicular
СР	: calcaneal pitch
CVT	: congenital vertical talus
EMG	Electromyography
FDB	: Flexor Digitorum Brevis
FDL	: Flexor Digitorum Longus
Mp Joint	: Metatarsophalengeal joint
NC joint	: Naviculocuneform joint
PTT	: Posterior Tibial Tendon
PTTD	: Posterior Tibial Tendon Deficiency
TAT	: Tibialis Anterior Tendon
T-H	: talohorizontal angle
T-I MT	: talo-first metatarsal angle
TN	: Talonavicular
TP	: Tibialis Posterior
TTP	: Tendon of the Tibialis Posterior
UCBL	: University of California Biomechanics Laboratory

Subject	Page
INTRODUCTION	1
ANATOMY	4
BIOMECHANICS	13
PATHOLOGY	26
DIAGNOSIS	39
Radiology	45
TREATMENT	52
SUMMARY	100
REFERENCES	101
ARABIC SUMMARY	

Acknowledgements

First of all, all gratitude is due to **Allah** for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my thanks to **Dr. Ayman Hussein**Gouda, Professor of Orthopedic Surgery, Ain Shams University,

for his support and guidance during the course of this work.

I would also like to thank **Dr. Ahmed Naeem Atiyya**, Lecturer of Orthopedic Surgery, Ain Shams University for his extremely valuable work in the laboratory aspect of the thesis, without which this work would never have been accomplished.

INTRODUCTION

Approximately 20 percent of all musculoskeletal complaints are related to the foot and ankle, which is not surprising if one considers the functions of the foot:

- ➤ It provides a stable base on which the body can stand.
- ➤ It acts, as a rigid lever to propel the body forward during walking.
- ➤ It provides shock absorption for the force generated during walking and running (approximately two to six times individuals body weight) (1)

Flatfoot is the term used to describe a weight-bearing foot shape in which the hind foot is in valgus alignment, the mid foot sags in a planter direction with reversal of the longitudinal arch and the forefoot is supinated in relation to the hind foot. Flexibility refers to the mobility of the subtalar joint and the longitudinal arch and the ability of both to reverse their malalignment. (2)

Flatfoot may exist as an isolated pathology or as part of larger clinical entity. These entities include generalized ligamentous laxity, neuralgic and muscular abnormalities, genetic condition, syndromes and collagen disorders. Pediatric flatfoot can be divided in to flexible and rigid categories. Flexible flatfoot is characterized by a normal arch during non-weight bearing and a flattening of the arch on stance. Flexible flatfoot may be asymptomatic or symptomatic. (3)

1

The asymptomatic flexible flatfoot may be physiologic or non-physiologic. Most flexible flatfoot is physiologic, asymptomatic and requires no treatment. Physiologic flexible flatfoot follows a natural history of improvement over times. Periodic observation may be indicated to monitor for signs of progression. Treatment generally is not indicated. (4)

Non physiologic flexible flatfoot is characterized by progression over time. The degree of deformity is more severe in non-physiologic than in physiologic flexible flatfoot, the amount of heel eversion is excessive, the talonavicular joint is unstable. Additional findings include tight heel cords and gait disturbance. Periodic observation is indicated in non-physiologic flexible flatfoot. Patients with tight heel cord may benefit from stretching. Orthoses may also be indicated. (3)

Unlike physiologic and asymptomatic non physiologic flexible flatfoot, symptomatic form of flexible flatfoot produce subjective complaints, alter function and produce significant objective findings.

These include pain along the medial side of the foot, pain in the sinus tarsi, leg and knee. Decrease endurance, gait disturbance, prominent medial talar head, everted heel and heel cord tightness. (5)

Initial treatment includes activity modifications and orthoses. Stretching exercises for equinus deformity can be performed under physician or physical therapist supervision. Non-steroidal anti-inflammatory medications may be indicated in more severe cases. Comorbidities, such as obesity,

ligamentous laxity, hypotonia, and proximal limb problems, must be identified and managed, if possible. If there is a positive clinical response and symptoms are resolved, observation and orthoses (when appropriate) are instituted. If clinical response is not satisfactory, reassessment and additional work up are indicated. When all nonsurgical treatment option have been exhausted, surgical intervention can be considered. (3)

Options for surgical treatment vary from simple soft tissue procedures to calcaneal osteotomy, subtalar extra articular arthrodesis and triple arthrodesis. (6)

Calcaneal lengthening operation was first identified by Evans and was introduced as an option for calcaneovalgus deformities due to various etiologies, instead of triple arthrodesis. (7)

The Evans calcaneal osteotomy is currently the premier procedure for lateral column lengthening of flexible flatfoot deformity. It withstood the test of time, providing itself as an effective procedure for correction of pediatric flexible flatfoot.

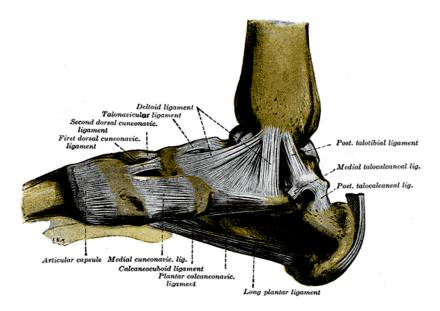
Current understanding of the osteotomy has allowed the Evans calcaneal osteotomy to become a useful tool in the correction of the adult flexible flatfoot as well. (8)

Chapter (1)

ANATOMY

Introduction

The diagnosis and treatment of foot and ankle injuries require knowledge of anatomy, gait and biomechanics. The human foot combines mechanical complexity and structural strength. The ankle serves as foundation, shock absorber and propulsion engine. The foot can sustain enormous pressure (several tons over the course of a one-mile run) and provides flexibility and resiliency.


The foot and ankle contain:

- > 26 bones (One-quarter of the bones in the human body are in the feet.).
- > 33 joints.
- > More than 100 muscles, tendons and ligaments.
- > A network of blood vessels, nerves, skin and soft tissue.

These components work together to provide the body with support, balance and mobility. A structural flaw or malfunction in any one part can result in the development of problems elsewhere in the body ⁽¹⁾.

Ankle Joint

The ankle-joint is a ginglymus or hinge-joint. The structures entering into its formation are the lower end of the tibia and its malleolus, the malleolus of the fibula and the transverse ligament, which together form a mortise for the reception of the upper convex surface of the talus and its medial and lateral facets (figure 1).

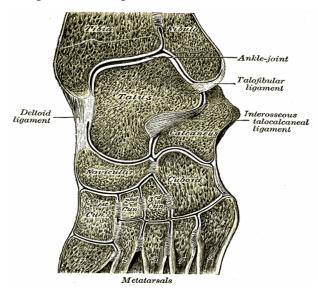


Figure (1): Ligaments of the medial aspect of the foot ⁽²⁾.

The range of movement varies in different individuals from about 50° to 90° . The transverse axis about which movement takes place is slightly oblique. The malleoli tightly embrace the talus in all positions of the joint, so that any slight degree of side-to-side movement which may exist is simply due to stretching of the ligaments of the tibiofibular syndesmosis and slight bending of the body of the fibula. (2)

Intertarsal Articulations

Talocalcaneal Articulation: the articulations between the calcaneus and talus are two in number, anterior and posterior. Of these, the anterior forms part of the talocalcaneonavicular joint. The posterior or talocalcaneal articulation is formed between the posterior calcaneal facet on the inferior surface of the talus and the posterior facet on the superior surface of the calcaneus. It is an arthrodial joint and the two bones are connected by an articular capsule and by anterior, posterior, lateral, medial and interosseous talocalcaneal ligaments (figure 2).

Figure (2): Oblique section of left intertarsal and tarsometatarsal articulations, showing the synovial cavities ⁽²⁾.

Movements: The movements permitted between the talus and calcaneus is limited to gliding of the one bone on the other backward and forward and from side to side. (2)

Talocalcaneonavicular Articulation: This articulation is an arthrodial joint, the rounded head of the talus being received into the concavity formed by the posterior surface of the navicular, the anterior articular surface of the calcaneus, and the upper surface of the planter calcaneonavicular ligament. There are two ligaments in this joint: the articular capsule and the dorsal talonavicular.

Movements: This articulation permits of a considerable range of gliding movements and some rotation; its freeble construction allows occasionally dislocation of the other bones of the tarsus from the talus. (2)