Comparison of Chest Ultrasound and Chest Computed Tomography Prior to Medical Thoracoscopy

Thesis

Submitted in partial fulfillment for Master Degree in Chest Diseases

 $\boldsymbol{B} \mathbf{y}$

Hanan Hosny Ibraheim Mahmoud

M.B.B.Ch.

Supervised by

Prof. Dr. Magdy Mohammed Khalil

Prof. of Chest Diseases Faculty of Medicine Ain Shams University

Dr. Haytham Samy Diab

Lecturer of Chest Diseases Faculty of Medicine Ain Shams University

> Chest Department Faculty of Medicine Ain Shams University

> > 2013

First, thanks to "ALLAH" for granting me the power to accomplish this work and without His willing I would have achieved nothing.

I would like to express my sincere gratitude and appreciation to **Prof. Dr. Magdy Mohammed Khalil,** Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for his valuable knowledge, great help, continous guidance and kind encouragement during this work and reviewing my work till the end. Words of thanks are minute to express my gratitude for him for giving me the chance to learn something new and useful.

I would like to express my deepest thanks and gratitude to **Dr. Haytham Samy Diab**, lecturer of Chest diseases, Faculty of Medicine, Ain Shams University for his guidance and support throughout this work.

I am also deeply thankful to the sonographers; **Dr. Hanaa Fayez** and **Dr. Ahmed Soliman** for their great effort and support.

I am very grateful to the thoracoscopists; **Dr. Emad Edward, Dr. Ehab Thabet** and **Dr. Wael Emara** for their cooperation and support.

Finally, I would like to express my deep thanks to *my family* who were always beside me giving me all forms of support to accomplish this work.

The candidate

Hanan Hosny Ibraheim Mahmoud

LIST OF Abbreviations

2D	Two-dimensional
B-mode	Brightness mode
CAP	Community-acquired pneumonia
Сс	Cubic centimeter
Cm	Centimeter
COPD	Chronic obstructive pulmonary disease
CT	Computed tomography
CTPA	Computed tomographic pulmonary angiogram
CXR	Chest radiograph
DPLD	Diffuse parenchymal lung disease
HRCT	High resolution computed tomography
ICU	Intensive care unit
Kg	Kilogram
LDH	Lactate dehydrogenase
MDCT	Multi-detector computed tomography
MHz	Megahertz
ml	Millilitre
mm	Millimeter
M-mode	Motion mode
MPM	Malignant Pleural Mesothelioma
MRI	Magnetic resonance imaging
MT	Medical thoracoscopy
No.	Number
PA	Posteroanterior
PE	Pulmonary embolism
Rt.	Right
SD	Standard deviation
TB	Tuberculosis
TUS	Thoracic ultrasound
UK	United Kingdom
US	Ultrasound
VATS	Video assisted thoracoscopic surgery
VS	Versus

LIST OF TABLES

Table	TP:41.	D
No.	Title	Page
1	Demographic characteristics of the studied group	94
2	Ultrasonograph findings concordant with CT findings	95
3	Ultrasonograph findings of internal echogenicity of the effusion (as correlated with intra-operative findings) that were discordant with chest CT	96
4	Other ultrasonograph findings (as correlated with intra-operative findings) that were discordant with chest CT	98
5	Abnormalities missed by ultrasound examination, but identified by chest computed tomography	99
6	Abnormalities missed in chest computed tomography and chest ultrasound and detected intra-operatively by medical thoracoscopy	101
7	Comparison between chest computed tomography and chest X-ray findings in patients with abnormalities confirmed by chest computed tomography and missed by chest ultrasound	102
8	Time length of the medical thoracoscopy procedure	104
9	Complications during the procedure of medical thoracoscopy	105
10	Complications after the procedure of medical thoracoscopy	106
11	Final diagnosis of the studied cases	107

LIST OF FIGURES

Figure No.	Title	Page
1	Acoustic impedence of different materials	8
2	The time gain control panel	10
3	Various ultrasound probes	12
4	Different types of transducers	14
5	Transducer orientation in different positions	16
6	A lines	18
7	B lines	19
8	Bat sign	21
9	Seashore sign in M- mode ultrasound	23
10	Stratosphere sign in M- mode ultrasound	24
11	Sonogram showing lung point	25
12	Normal sonographic appearance of the pleural line	30
13	Trans-hepatic ultrasound examination. Lung is	31
	indicated as a mirror artifact above the diaphragm	
14	Localized pleural thickening	32
15	Chest x-ray shows right sided massive pleural	35
	effusion and chest ultrasonography image shows	
	massive pleural effusion including echogenic	
	masses	
16	Intercostal sonogram shows prominent hypoechoic	36
	nodular masses adjacent to the diaphragmatic	
	pleura	
17	CT scan of the chest shows pleural effusion with	44
	curvilinear upper margin and Mediastinal	
	lymphadenopathy.	
18	CT scan of the chest demonstrates a loculated	45
	pleural effusion	

19	Sinusoid sign in M-mode ultrasound	47
20	Different sonographic appearances of pleural	49
	effusions	
21	Flow-chart showing the sonographic diagnosis of	53
	pneumothorax	
22	The ultrasound examination for pneumothorax	55
	performed on a single site on both sides of the	
	upper chest	
23	The probe is moved to the lateral areas looking for	55
	lung point in case of lack of sliding and B lines in	
	the anterior chest. Corresponding CT scan showing	
	right sided pneumothorax.	
24	Sonogram showing Peripheral bronchial carcinoma.	59
25	Sonogram showing Pulmonary metastasis	61
26	Lung ultrasound scan showing pneumonia	62
27	Sonographic appearance of pulmonary infarction	70
28	Sonogram showing Pleural effusion with	72
	compressive atelectasis	
29	Multiloculated fibrinous adhesions as seen at	79
	thoracoscopy, and the ultrasound correlate	
30	Steps of medical thoracoscopy procedure	81
31	Ultrasonograph types of internal echogenicity of	96
	effusion.	
32	Other ultrasonograph findings that were discordant	98
	with chest computed tomography.	
33	Abnormalities missed in chest ultrasound and	100
	detected by chest computed tomography.	
34	Comparison between computed tomography- and	103
	chest X-ray findings in patients with abnormalities	
	confirmed by chest computed tomography and	
	missed by chest ultrasound.	
35	Complications during the procedure of medical	105
	thoracoscopy.	

36	Complications after medical thoracoscopy.	106
37	Final diagnosis of the studied group.	107
38	Different sonographic appearances of pleural effusions: Anechoic pattern, homogeneously	109
	echogenic pattern, and Complex septated pattern.	
39	Thoracic ultrasonography in overweight female patient showing massive left sided pleural effusion with thick fibrous septation, not identified on	110
	pleural CT, but evident in medical thoracoscopy.	
40	Thoracic ultrasonography showing massive right sided pleural effusion with fibrous septation and multiloculation, not identified in pleural CT, but evident in medical thoracoscopy. Chest X-ray before the procedure showed same CT findings, chest X-ray done 2 days after the procedure showed trapped right lung with failure to reexpand.	111
41	Thoracic ultrasonography showing massive right sided pleural effusion with echogenic pleural mass, identified in pleural CT and shown in medical thoracoscopy.	112
42	Thoracic ultrasonography showing massive right sided pleural effusion with diaphragmatic pleural nodules, identified on pleural CT and shown in medical thoracoscopy.	113

LIST OF CONTENTS

Contents	Page
Introduction	1
Aim of the Work	3
Review of Literature	4
Chest ultrasonography & chest CT	4
Transducers	11
Scanning strategy	14
Ultrasound terminology	17
A lines	18
B lines	19
Posterior enhancement artifac	20
Mirror artifact	20
Bat sign	21
Lung sliding	22

Stratosphere sign	24
Lung point	25
Lung pulse	26
Doppler	26
Anatomic landmarks and ultrasound appearance	27
Chest wall and pleura	27
Diaphragm	27
Lung	28
Ultrasound and pleural diseases	29
Normal sonographic appearance of pleural spac	29
Pleural thickening	32
Pleural tumors	34
Pleural effusion	38
Pneumothorax	52
Role of TUS in the most important and frequent pulmonary diseases	57

Neoplasms	58
Pneumonia and lung abscess	62
Diffuse parenchymal lung diseases	65
Peripheral pulmonary artery embolism and pulmonary infarction	68
Atelectasis	71
Ultrasound and medical thoracoscopy	75
Patients and Methods	
Results	94
Discussion	114
Summary	129
Conclusion	
Recommendations	
References	
Arabic Summary	

Introduction

A pleural effusion is an abnormal collection of fluid in the pleural space resulting from excess fluid production or decreased absorption (*Diaz-Guzman and Dweik*, 2007).

The tests most commonly used to diagnose and evaluate pleural effusion include chest x-ray, computed tomography (CT) scan of the chest, ultrasound of the chest (US), thoracentesis, and pleural fluid analysis. When the pleural effusion has remained undiagnosed despite previous less-invasive tests, thoracoscopy may be performed (*Colice et al.*, 2000).

Thoracoscopy is a minimally invasive procedure that allows visualization of the pleural space and intrathoracic structures. It enables the taking of pleural biopsies under direct vision, therapeutic drainage of effusions and pleurodesis in one sitting (*Lin et al.*, 2006).

Because thoracoscopy is diagnostic in more than 90 percent of patients with pleural malignancy and negative cytology, it is the preferred diagnostic procedure in patients with cytology-negative pleural effusion who are suspected of having pleural malignancy (*Antony et al.*, 2001).

Transthoracic ultrasound has received increased interest from chest physicians in recent years as it has the advantages of bedside availability, absence of radiation, and guided aspiration of fluid-filled areas and solid tumors (*Beckh et al.*, 2002).

Ultrasound has been proved to be a reliable, efficient, and informative imaging modality for the evaluation of a wide variety of chest diseases (*Beckh et al.*, 2002).

Thoracic CT is an imaging method that uses x-rays to create cross-sectional pictures of the chest and upper abdomen (*Stark*, 2007).

Chest CT scans can be used to find out whether you have a lung problem in addition to pleural effusion (*Rocco et al.*, 2008).

In a previous study, chest ultrasound was equally able to detect pleural fluid location when compared with chest CT. Chest ultrasound was superior to chest CT in its ability to resolve the internal components of pleural fluid including fibrin strands, which may indicate early organization of an effusion (*Kim et al.*, 2000).

Aim of the work

The aim of the current study is to compare chest ultrasound and chest computed tomography findings prior to medical thoracoscopy to examine the concordance and discordance between them, and how would US affect the conduct and the outcome of the procedure.

Chest Ultrasonography & Chest CT

There are many radiological techniques in thoracic imaging including; Chest radiography, Computed tomography, High resolution computed tomography, Ultrasound, and Magnetic resonance imaging (Aziz and Hansell, 2008).

Diagnostic ultrasonography is the only clinical imaging technology currently in use that does not depend on electromagnetic radiation. This modality is based on the properties of sound waves, and hence the mechanical and acoustic properties of tissues. Diagnostic ultrasound is mechanical energy that causes alternating compression and rarefaction of the conducting medium, traveling in the body as a wave usually at frequencies of 2–10 MHz, well beyond audible frequencies (*Middleton et al.*, 2004).

Diagnostic ultrasonography is a very valuable tool for imaging the chest because it causes no clinically significant biological effects, is a real-time examination, and has multi planar imaging capability. In real time, one can focus the study on a painful or palpable area. This modality of ultrasonography can be portable, very significant for ICU and emergency room (*Koh et al., 2002*).