

Role of Magnetic Resonance Imaging in evaluation of Ovarian Tumors

Thesis

Submitted For Partial Fulfillment of Master Degree in Radiology

BY Marwa Qays Ahmed M.B.,B.Ch

Supervisors

Dr. Sherine Kadry Amin

Professor of Radiology
Faculty of Medicine- Ain shams University

Dr. Ahmed Mohammed Bassiouny

Lecturer of Diagnostic Radiology Faculty of Medicine- Ain shams University

Faculty of Medicine
Ain Shams University
2015

دور الرنين المغناطيسي في تقييم سرطان المبيض

ر**سالة** ولا على ورجة 141م

توطئة للمصول على ورجة (الماجستير في الأشعة التشخيصية

مقرمه من الطبيبه مسروى قيسس احمد بكالوريوس الطب والجراحة

خت لِشران أ.د شيريسن قسدري اميسن

> أستاذ الأشعة التشخيصية كلية الطب – جامعة عين شمس

د.احمد محمد فهمسي بسيونسي

مدرس الأشعة التشخيصية كلية الطب – جامعة عين شمس

> كلية الطب جامعه عين شمس ٢٠١٥

سورة البقرة الآية: ٣٢

- First of all I would like to thank **ALLAH** for giving me the power to complete this work, may he be generous on me and give me the knowledge to help others.
- I am horned to express my deepest appreciation and profound gratitude to Prof. Dr. Sherine Kadry Amin Prof. of Radiodiagnosis, Faculty of Medicine, Ain Shams University, who has given me the privilege to work under her supervision. Her planning, constant guidance and generous cooperation have made the accomplishment of this work.
- My especial thanks to, Dr. Ahmed Mohammed Bassiouny Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Sham University, for his kind support. Also special thanks for all MRI unit operators.

> To My

Mother & Father & Sister / Mariam

For their warm affection, patience, encouragement, and for always being there when I needed them

s Ja

My husband **Dr. Ghaith Sael** who always support me, my daughters **Reem L Ann** who fill my life with joy

Contents

Subjects	
List of Abbreviations	I
List of Tables	III
List of Figures	IV
Abstract	IX
• Introduction	1
Aim of the Work	5
• Review of literature	
- Anatomy of the ovary	6
- Pathology of ovarian tumors	14
- Technique of pelvic MRI	27
- MRI manifestations of ovarian tumors	41
Patients & methods	110
Results	116
Illustrated cases	126
• Discussion	145
Summary and Conclusion	153
• References	156
Arabic summary	

List of Abbreviations

ADC: Apparent Diffusion Coefficient

BOT: Border line Ovarian Tumors

Cho : Choline Cr : Creatine

CT : Computed tomography

DCE-: Dynamic contrast Enhanced

MRI

DW: Diffusion-weighted

DWI : DIFFUSION weighted imaging

EADC: Exponential Apparent Diffusion Coefficient

FIGO: Fedetration International Gynaclolgy,

Obestetric

FIGO: The International Federation of Obstetrics and

Gynecology

FLASH: Fast low angle shot

FOV : False Negative : Field of view

FOV : Field of view FP : False positive

FSE: Fast SPIN ECHO

FSE : Fast Spin Echo

GCT : Granulosa cell tumors

Gd : Gadolinium

HASTE: Half-Fourier single shot turbo spin echo

HCG: Human chorionic gonadotrophin

MR : Magnetic Resonance

MRE : Maximum Relative Enhancement

MRI : Magnetic Resonance Imaging

SList of Abbreviations &

MRS : MR spectroscopyNAA : N-acetylaspartate

NPV: Nigative Predictive Value

PET: Positron Emission Tomography

ppm : Parts per million

PPV : Positive predictive value

PRESS: Point-resolved spectroscopy in the steady state

ROI : Region of interest

Rt: Right

SE : Spin echoSE : Spin Echo

SI : Signal intensity

SNR : Signal-to-noise ratioSPGR : Spoiled gradient-echo

STEAM: Stimulated echo acquisition mode

STIR : Short T1 inversion recovery

T1WI : T1 weighted images.T2WI : T2 weighted images

TE: Echo TIME

TI : Inversion timeTN : True Negative

TNM: Tumor, nodal and metastatic staging

TP : True positive
TR : Repititon Time
TR : Repetition time
TV U/S : Trans vaginal u/s

US : Ultrasound

USPIO: Ultrasmall superparamagnetic iron oxide

WHO: World Health Organization

List of Tables

Table No	Title	Page
Table (1)	TNM and FIGO Classifications for	25
	Ovarian Cancer.	
Table (2)	Metabolites Detected with Proton MR	34
	Spectroscopy	
Table (3)	Patterns of USPIO uptake in benign	106
	lymph nodes at MR lymphography	
	(MRL) and respective interpretations	
	of these patterns.	
Table (4)	Patterns of USPIO uptake in metastatic	108
	lymph nodes at MR lymphography	
	(MRL) and respective interpretations	
	of these patterns.	
Table (5)	Comparison of mean Age (years)	116
	between cases with benign to	
	malignant tumors.	
Table (6)	The pathological type.	117
Table (7)	The different histological types	118
Table (8)	The different patients complain	120
Table (9)	Represents result of MRI finding.	122
Table (10)	Represents Results of conventional	125
	MRI compared to pathology.	

Figure No	Title	Page
Fig. (1)	Female anatomy.	7
Fig. (2)	Cross section of an ovary.	8
Fig. (3)	Posterior view of the right ovary and	9
	uterus. Two main ligaments of the	
	ovary labelled.	
Fig. (4)	Blood supply of femle reproductive	10
	system	
Fig. (5)	MR imaging of Normal ovaries	11
Fig. (6)	MR imaging of Bilateral ovarian	12
	follicles during the early proliferative	
	(follicular) phase	
Fig. (7)	MR imaging of Normal follicular	13
	appearance	
Fig. (8)	Diagram shows metabolite frequency	32
	relative to water frequency.	
Fig. (9)	Granular cell tumor	36
Fig. (10)	ovarian fibrothecoma	37
Fig. (11)	Sequence Parameters at Different	38
	Field Strengths and b Value	
Fig. (12)	Planning MR lymphography.	39
Fig. (13)	MR imaging of functional cyst	42
Fig. (14)	MR imaging of Hemorrhagic cyst.	43
Fig. (15)	MR imaging of serous cystadenoma	46

Figure No	Title	Page
Fig. (16)	MR imaging of Serous papillary	47
	carcinoma in a 56-year-old woman.	
Fig. (17)	MR imaging of Benign mucinous	49
	tumours	
Fig. (18)	MR images of tubo-ovarian	51
	endometriosis	
Fig. (19)	MR imaging of endometrial	52
	carcinoma	
Fig. (20)	MR imaging of Clear cell carcinoma	53
Fig. (21)	MR images of benign brenner tumor	55
Fig. (22)	MR imaging of Left ovarian	57
	granulosa cell tumor with endometrial	
	hyperplasia (Hyperestrogenism).	
Fig. (23)	MR images of fibrothecoma	59
Fig. (24)	MR images of sertoli-Leydig cell	60
	tumor.	
Fig. (25)	MR imaging of steroid cell tumor	61
Fig. (26)	MR images of dysgerminoma.	63
Fig. (27)	MR imaging of mature teratoma	65
Fig. (28)	MR images of immature teratoma.	66
Fig. (29)	MR images of mature cystic teratoma	67
	of the left ovary and endometriosis of	
	the right ovary	
Fig. (30)	MR images of bilateral Krukenberg	69
	tumors from gastric carcinoma.	

Figure No	Title	Page
Fig. (31)	MRI shows direct uterine invasion.	71
Fig. (32)	MRI shows different appearance of	73
	peritoneal implants.	
Fig. (33)	MRI show Metastatic well-	74
	differentiated serous carcinoma of the	
	ovary.	
Fig. (34)	MR imaging of serous carcinoma.	75
Fig. (35)	Implant on the liver capsule.	77
Fig. (36)	Clear cell carcinoma.	79
Fig. (37)	Mature cystic teratoma	80
Fig. (38)	high grade serous carcinoma with	81
	metastatic spread.	
Fig. (39)	MRS in a case of thecoma	82
Fig. (40)	mature cystic teratoma.	83
Fig. (41)	MR imaging of large bilateral	87
	ovarian.	
Fig. (42)	ovarian fibrothecoma.	89
Fig. (43)	benign mucinous cystadenoma.	90
Fig. (44)	primary debulking surgery for stage	91
	III ovarian cancer.	
Fig. (45)	Recurrent ovarian cancer.	92
Fig. (46)	stage IIA ovarian cancer.	93
Fig. (47)	Residual malignant deposit in the	94
	peritoneum.	

Figure No	Title	Page
Fig. (48)	Recurrent ovarian cancer.	95
Fig. (49)	Stage IIA ovarian cancer.	96
Fig. (50)	Benign obturator node.	100
Fig. (51)	Benign inguinal node with fatty	102
	hilum.	
Fig. (52)	Endometrial carcinoma.	103
Fig. (53)	Blooming artifact with	105
	adenosquamous carcinoma of the	
	cervix.	
Fig. (54)	Benign external iliac node.	107
Fig. (55)	Malignant obturator node.	109
Fig. (56)	Comparison of mean Age (years)	116
	between cases with benign to	
	malignant tumors.	
Fig. (57)	The pathological type.	117
Fig. (58)	The different histological types.	119
Fig. (59)	The different patients complain.	120
Fig. (60)	Represents the different compositions	121
	of the tumors and their percent.	
Fig. (61)	Represents the bilaterality of the	121
	lesions and their percent.	
Fig. (62)	Represents result of MRI finding.	122
Fig. (63)	Showing criteria of malignant mass in	124
	MRI.	

Figure No	Title	Page
Fig. (64)	Left Serous Cystadenocarcinoma.	126
Fig. (65)	Bilateral cystadenocarcinoma.	129
Fig. (66)	Granulosa cell tumor.	133
Fig. (67)	Right Cystadenoma.	136
Fig. (68)	Mature teratoma.	139

Abstract

The purpose of this study is to demonstrate the value of magnetic resonance imaging for the diagnosis of ovarian tumors, and to discuss the accuracy of MRI in this setting.

This study was performed on 20 female patients and conducted in the Ain Shams hospital patients. All cases were referred from the gynecology department to the radiology department as ovarian masses based on U/S study for pelvic MR. The twenty (20 cases) were pathologically proved.

In our study the sensitivity of MRI was 90.0%, the specificity was 80.0%, and the accuracy was 85.0% for ovarian mass characterization.

In conclusion MRI, is highly accurate for identifying the origin of a mass and characterizing its tissue content, obviating surgery. Better results are achieved by combining DWI with the conventional MRI.

Key words: MRI, ovarian masses, pathological diagnosis.