

Assessment of Antimicrobial Activity for Some Natural Products in Functional Textile Using Inclusion Complex Technique

Thesis
Submitted for Partial Fulfilment of Master Degree in
Microbiology

By

Maha Salah Mohamed

(B.Sc. Microbiology, 2005)

Supervisors

Dr. Mohamed Abd-Elmonatser Abouzeid

Professor of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Dr. Khaled Ebrahim El-Nagar

Professor of Chemistry
Head of Textile Metrology Lab,
Chemical Metrology Division
National Institute for Standards

Dr. Khaled Zakeria El-Baghdady

Lecturer of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Microbiology Department, Faculty of Science, Ain Shams University.

2012

ACKNOWLEDGMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful

Great thanks to *Dr. Mohamed Abd-Elmonatser Abouzeid*, Prof. of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for his continuous guidance, support and supervision.

It is of a great pleasure to express my deep gratitude acknowledge and my indebtedness to *Dr. Khaled Mostafa El-Nagar* Prof. of chemistry, Head of Textile Metrology lab, Chemical Metrology Division, National Institute for Standards, for suggesting this research point, valuable contribution and help.

I would like to express my deep thanks and gratitude to *Dr. Khaled Zakeria El-Baghdady* Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for his continuous guidance, support, encouragement, advice and valuable suggestion during all steps of this work.

My gratitude is extended to Head of Microbiology Department, my colleagues and every one in Microbiology Department, Faculty of Science, Ain Shams University and the textile metrology lab, National Institute for standards that gave me encouragement and support during this work.

My deepest thanks are also to my family for their help and cooperation.

CONTENTS

Title	Page No.
List of tables	
List of figures	
Abbreviations	
Aim of work	
Abstract	1
Introduction	2
Literature Review	4
1.1 Medical textiles	5
1.2 Antimicrobial textiles	7
1.3 Cotton	13
1.3.1 Physical and chemical properties of cotton fibres	14
1.3.2 Finishing treatment of cotton fabrics	16
1.3.3 Crease resistance and resiliency finishes	16
1.3.4 Soil release finishes	17
1.3.5 Water-repellent finishes	17
1.3.6 Ultraviolet protection finishes	18
1.3.7 Antimicrobial and anti-insect finishes	19
1.4 Mode of action of antimicrobial agents	23
1.4.1 Inhibition of cell wall synthesis	23
1.4.2 Inhibition of cell membrane function	24
1.4.3 Inhibition of protein synthesis	24

1.4.4 Inhibition of nucleic acid synthesis	25
1.4.5 Inhibition of other metabolic processes	25
1.5 Chitosan	26
1.5.1 Antimicrobial activity of chitosan	30
1.5.2 Mode of action of chitosan as antimicrobial agent	31
1.6 Cyclodextrins	32
1.6.1 Toxicological properties of cyclodextrins	33
1.6.2 Uses of cyclodextrins	34
1.7 Importance of some pathogenic bacteria	37
Materials and Methods	
2.1 Materials	40
2.1.1 Fabric	40
2.1.2 Chitosan	40
2.1.3 Plant (neem)	40
2.1.4 Cyclodextrine	40
2.1.5 Clinical isolates	40
2.1.6 Media and buffer solution	41
2.1.7 Chemicals	42
2.2 Methods	42
2.2.1 Cotton fabric	42
2.2.2 Preparation of neem extract	42
2.2.3 Preparation of chitosan	43
2.2.4 Preparation of inclusion complex	43
2.2.5 Fabric treatments	44

2.2.5.1 UV/Ozone, chitosan and/or IC treatment	44
2.2.6 Mechanical and physical properties of cotton fabrics	45
2.2.6.1 Tensile strength and elongation	45
2.2.6.2 Air permeability	45
2.2.6.3 Thickness	46
2.2.6.4 Crease recovery angle (CRA)	47
2.2.6.5 Durability test (after washing)	47
2.2.6.6 Fourier Transform Infra Red Spectroscopy With Attenuation Total Reflection (FTIR-ATR)	48
2.2.7 Bacteriological tests for cotton fabrics	48
2.2.7.1 Maintenance of clinical isolates	48
2.2.7.2 Preparation of bacterial inoculum	48
2.2.7.3 Antibiotic sensitivity test	49
2.2.7.4 Identification of selected clinical isolates	49
2.2.7.5 Antibacterial activities of chitosan and inclusion	50
complex 2.2.7.6 Antibacterial activities of cotton fabrics pre-treated with UV/Ozone	50
2.2.7.7 Assessment of antibacterial activities of cotton fabrics	51
2.2.7.8 Microbiological statistics	52
2.2.7.9 Preparation of samples for Scanning electron microscopy examination	52
Results	
3.1 Screening and identification for multidrug resistant bacteria among the collected isolates	53
3.2 Formation of Inclusion complex	55

3.3 Antimicrobial activities of natural products	57
3.4 Surface Modification with UV/Ozone as a fabric	63
preparation for inclusion complex treatment	
3.4.1 Antimicrobial activities of pretreated cotton discs with	66
UV/Ozone	
3.4.2Effect of UV/Ozone treatment on tensile strength of	66
treated fabric samples with chitosan and inclusion	00
complex formulations.	
3.4.3Effect of UV/Ozone treatment on elongation of	66
treated fabric samples with chitosan and inclusion	00
complex formulations 3.4.4 Effect of UV/Ozone treatment on air permeability of	
treated fabric samples with chitosan and inclusion	67
complex formulations	
3.4.5 Effect of UV/Ozone treatment on thickness of treated	
fabric samples with chitosan and inclusion complex	71
formulations	
3.4.6 Effect of UV/Ozone treatment on crease recovery (°)	
of treated fabric samples with chitosan and inclusion	71
complex formulations	
3.4.7 Effect of UV/Ozone treatment on fabric weight (g/m²)	72
of treated fabric samples with chitosan and inclusion	
complex formulations	
3.4.8 Assessment of antibacterial finishes of treated and	76
washed discs with inclusion complex 0.5% at	
different time intervals	
	81
Discussion	01
conclusion	90
English Summary	91
References	95
Arabic Summary	

LIST OF TABLES

Table No	Title	Page No
(1)	Sensitivity of the clinical isolates towards different antibiotics. <i>Staphylococcus</i> sp., <i>Pseudomonas</i> sp., <i>Acinetobacter</i> sp., <i>Proteus</i> sp., AK: Amikacin, AMP: Amoxicillin, AMC: amoxicillin clavulanate, CEP: Cefoperazone, CTX: Cefotaxime, FOX: Cefoxtin, CAZ: ceftazidime, TZP: piperacillin Tazobactam, TE: Tetracycline and SAM: Ampicillin sulbactam	54
(2)	Identification of the selected clinical isolates.	55
(3)	Antibacterial activities of chitosan against different bacterial clinical isolates of Gram positive and Gram negative organism as <i>Staphylococcus aureus</i> (1-4), <i>Pseudomonas aeruginosa</i> (1-4), <i>Acinetobacter baumannii</i> and <i>Proteus mirabilis</i> .	59
(4)	Antibacterial activities of wet cotton discs loaded with inclusion complex (0.5, 1% of chitosan) against different bacterial clinical isolates. <i>Staphylococcus aureus</i> (1-4), <i>Pseudomonas aeruginosa</i> (1-4), <i>Acinetobacter baumannii</i> and <i>Proteus mirabilis</i> .	64
(5)	Effect of UV/O ₃ exposure period on tensile strength of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes (IC).	68
(6)	Effect of UV/O ₃ exposure period on elongation % of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes (IC).	69
(7)	Effect of UV/O ₃ exposure period on air permeability of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes (IC).	70
(8)	Effect of UV/O_3 exposure period on thickness (mm) of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes (IC).	73

(9)	Effect of UV/O ₃ exposure period on crease recovery angle (°) of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes (IC).	74
(10)	Effect of UV/Ozone exposure period on sample weight (g/m²) of treated samples with either chitosan solution (0.5 and 1.0%) or their inclusion complexes (IC).	75
(11)	Antibacterial activities of inclusion complex 0.5% at different time (2, 5 and 24 h) against <i>Staphylococcus aureus</i> (1 and 2) and <i>Pseudomonas aeruginosa</i> (1 and 2).	78

LIST OF FIGURES

Figure No	Title	Page No
(1)	Chemical structure of chitosan	12
(2)	Chemical formula of cellulose	13
(3)	Chemical structure of chitin and chitosane	27
(4)	Chemical structure of cyclodextrins (dimension in pm).	32
(5)	Schematically presentation of the fixation of cyclodextrin derivatives with hydrophobic (A) or reactive groups on polymer surface.	36
(6)	The FTIR spectrum of chitosan-cyclodextrin complex compared with those of individual chitosan and cyclodextrin.	56
(7)	Antibacterial activities of chitosan against different bacterial clinical isolates of Gram positive and Gram negative organisms as <i>Staphylococcus aureus</i> (1-4), <i>Pseudomonas aeruginosa</i> (1-4), <i>Acinetobacter baumannii</i> and <i>Proteus mirabilis</i> .	61
(8)	Antibacterial activities of chitosan and inclusion complex. A: <i>Staphylococcus aureus</i> , B: <i>Pseudomonas aeruginosa</i> , Ch: chitosan; CD: cyclodextrin and IC: inclusion complex.	62
(9)	Antibacterial activities of wet cotton discs loaded with inclusion complex (0.5% and 1%) against different bacterial clinical strains. A: untreated B: pretreated with UV/ozone. <i>Staphylococcus aureus</i> 1-4:; <i>Pseudomonas aeruginosa</i> 1-4; <i>Acinetobacter baumannii</i> ; <i>Proteus mirabilis</i> ; IC 0.5%: inclusion complex with chitosan 0.5% and IC 1%: inclusion complex with chitosan 1%.	65
(10)	Effect of UV/O ₃ exposure period on tensile strength of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes with cyclodextrin.	68

(11)	Effect of UV/O ₃ exposure period on elongation % of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes with cyclodextrin.	69
(12)	Effect of UV/O ₃ exposure period on air permeability of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes (IC)	70
(13)	Effect of UV/O ₃ exposure period on thickness of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes with cyclodextrin.	73
(14)	Effect of UV/O ₃ exposure period on crease recovery angle of treated samples with either chitosan solution (0.5 and 1%) or their inclusion complexes with cyclodextrin.	74
(15)	Effect of UV/ Ozone exposure period on sample weight of treated samples with either chitosan solution (0.5 and 1.0%) or their inclusion complexes with cyclodextrin	75
(16)	Log number of bacterial count at different time intervals (2, 5 and 24 h). <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> . C: control; T; treated and W: washed.	79
(17)	Scanning electron microscope images of <i>Staphylococcus aureus</i> grown for 24 h on untreated cotton fabrics (A) and treated cotton fabrics (B) with IC (Ch 0.5 in CD). Arrows pointed to deformed bacterial cells.	80
(18)	Scanning electron microscope images of <i>Pseudomonas aeruginosa</i> grown for 24 h on untreated cotton fabrics (A) and treated cotton fabrics (B) with IC (Ch 0.5 in CD). Arrows pointed to deformed bacterial cells.	81

ABBREVIATIONS

AATCC American Association of Textile Chemists and

Colorists

API Analytical Profile Index

ASTM American Standard Testing Method

ATR Attenuation Total Reflection

CF cystic fibrosis

CFU colony forming units

Ch chitosan

cm centimeter

CRA Crease recovery angle

DD degree of deacetylation

DNA Deoxyribonucleic acid

DP Durable press

FTIR Fourier Transform Infra Red Spectroscopy

IC inclusion complex

LPS lipopolysaccharide

LTA lipoteichoic acids

MDR Multidrug-resistant

MO microorganism

mRNA Messenger ribonucleic acid

MRSA methicillin-resistant Staphylococcus aureus

OM outer membranes

OSHA Occupational Safety and Health Administrative

PG peptidoglycan ribonucleic acid

SEM Scanning electron microscope

SI International System of Units

TA teichoic acid

UPF Ultraviolet protection factor

USA United States of America

UV Ultraviolet radiation

-CD -cyclodextrin

 μg microgram

μl microliter

Aim of the work

This work aims to produce a functional textile for medical purpose that has the ability to inhibit pathogenic bacteria including Gram-positive and Gram-negative bacteria. This new fabric regulates the release of the antimicrobial agent, thus prevents contamination which in turn accelerates the healing and avoids complications.

Abstract

Medical textiles are of much interest nowadays and many efforts have been done to improve them. In this research, we developed medical textile fabric by applying inclusion complex of chitosan in cyclodextrin as two natural polymers onto fabric after irradiation by UV/ozone. Treatment conditions were optimized with respect to mechanical testing including tensile strength and elongation percentage. The treated fabric was tested against some pathogenic bacteria. It was found that the developed fabric was able to inhibit the bacterial growth as (Staphylococcus **Pseudomonas** aeruginosa, Acinetobacter aureus. baumannii and Proteus mirabilis) after 24 h of direct contact. Marked improvements of mechanical properties of the treated textile were obtained. Scanning electron microscope showed clear bacterial cell deformation when growing on treated textile.

Introduction

Microorganisms create and aggravate problems in hospitals and other environments by transmitting diseases and infections through clothing, bedding etc. Cotton is subjected to growth of pathogenic microorganisms which deteriorate cellulosic fibre and reduce the wear life of the materials (**Vigo**, **1997**).

It is known that bacteria are usually active at pH 7.0-8.0 and fungi at pH 4.0-6.5, thus microorganisms exist in abundant quantities on textile materials for example Gram positive and Gram negative bacteria e.g. *Micrococcus luteus*, *Staphylococcus aureus*, *Escherichia coli* and fungi as *Candida albicans*, *Candida krusei* (Seventekin and Ucarci, 1993).

Burn patients and people who do not have functioning immune systems also need to wear germ-free or germicidal textiles to avoid infections (Lewin and Sello, 1983 and Prabaharan and Mano, 2006). These fabrics use chemical compounds that either destroy or inhibit the growth of microorganisms. Medical textiles as a functional textile are used in a range of applications from wound-care products, surgical drapes and gowns to tissue-engineering scaffolding. They are also a growing sector within the technical textiles industry (Rigby, 1997).