

Faculty of Science Biochemistry Department

Impacts of Some Environmental Pollutants on Biochemical Functions of *Tilapia sp.* at Different Hot Spot Areas of Alexandria, Egypt

A Thesis

Submitted for the award of the degree

Of

Master of Science in Biochemistry

Submitted by

Mohamed Gamal Mohamed Amer El Gazar

B.Sc. in Biochemistry (2008) - Faculty of Science - Ain shams University

Under Supervision of

Prof. Shadia Abdel Hamid Fathy Prof. Mohamed Attia Shreadah

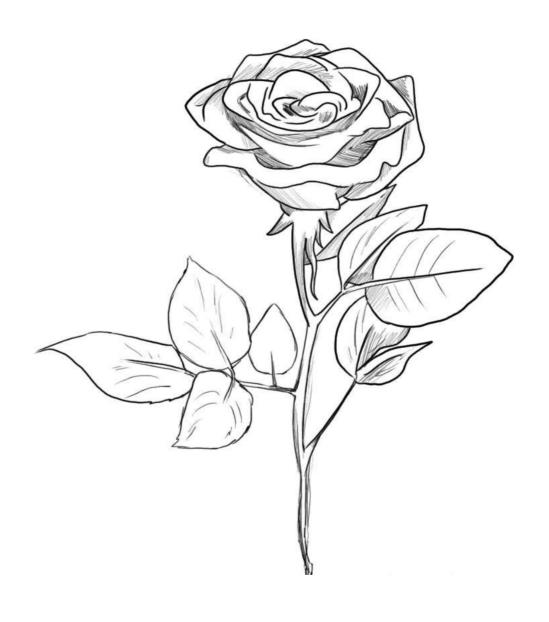
Professor of Biochemistry Faculty of Science Ain Shams University

Professor of Marine Chemistry and President of The National Institute of Oceanography and Fisheries (NIOF)

Prof. Fatma Farag Abdel Hamid

Professor of Biochemistry Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2012


بِسْمِ اللهِ الرَّحْمٰنِ الرَّحِيمِ

"وَقُلِ اعْمَلُوا فَسَيرَى اللَّهُ عَمَلُمْ وَرَسُولُهُ وَرَسُولُهُ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَيُنَبِّئُمُ بِمَا كُنْتُمْ تَعْمَلُونَ" وَالشَّهَادَةِ فَيُنَبِّئُمُ بِمَا كُنْتُمْ تَعْمَلُونَ"

صدَقَ الله العَظِيم

(التوبة:٥٠١)

GOD bless my Parents

Declaration

I declare that this thesis has been composed and the work recorded here has been done by me.

It has not been submitted for any other degree at this or any other university.

Mohamed Gamal M. Amer

Item No.	Subject	Page
	Acknowledgement	I
	Abstract	III
	List of Abbreviations	IV
	List of Tables	XI
	List of Figures	XIV
	Introduction	1
	Aim of the work	5
	CHAPTER I	
I.	Review of Literature	6
I.1.	Pollution in the Marine Environment	6
I.1.1.	Heavy Metals	8
I.1.2.	Persistent Organic Pollutants (POPs)	9
I.1.2.1.	Polycyclic Aromatic Hydrocarbons (PAHs)	11
I.1.2.2.	Organochlorine pesticides (OCPs)	14
I.1.2.3.	Polychlorinated Biphenyls (PCBs)	14
I.2.	Physicochemical characteristics of water	15
I.2.1.	Temperature (T)	15
I.2.2.	Hydrogen ion concentration (pH)	16
I.2.3.	Total Alkalinity (TA)	16
I.2.4.	Density (ρ)	16
I.2.5.	Transparency	17
I.2.6.	Turbidity	17
I.2.7.	Salinity (S)	17
I.2.8.	Chlorinity	18
I.2.9.	Electric Conductivity (EC)	18
I.2.10.	Total dissolved Solids (TDS)	18
I.2.11.	Dissolved Oxygen (DO)	19
I.2.12.	Biochemical Oxygen Demand (BOD ₅)	19
I.2.13.	Chemical Oxygen Demand (COD)	20
I.2.14.	Oxidizable Organic Matter (OOM)	20
I.2.15.	Total Nitrogen (TN) and Total Phosphorus (TP)	20
I.3.	Environmental Risk Assessment (ERA)	22
I.3.1.	Monitoring of Aquatic Pollution	22
I.3.2.	Selection of Biomonitor	25

Item No.	Subject	Page
I.3.3.	Choice of tissue	26
I.4.	Biological Response of Organism to Environmental	
	Contaminants	27
I.5.	Biomarkers	29
I.5.1.	Types of Biomarkers	30
I.5.2.	Selection of Biomarkers	30
I.5.3.	Nile Tilapia, Oreochromis niloticus	32
I.5.4.	Fish Biomarkers	33
I.5.4.1.	Oxidative stress and TAA using FRAP Assay	34
I.5.4.2.	Haematological parameters	35
I.5.4.3.	Proximate analysis of tissues	37
I.5.5.	Limitations of Biomarkers	38
	CHAPTER II	
II.	Materials and Methods	39
II.1.	Materials	39
II.1.1.	Sampling	39
II.1.1.1.	Water samples	39
II.1.1.2.	Fish samples	39
II.1.2.	Sampling sites	40
II.1.2.1.	Control site: Kilo 21 Drain (Control group)	42
II.1.2.2.	Site I: Umoum Drain (Group I)	42
II.1.2.3.	Site II: Nubaria Drain (Group II)	42
II.2.	Methods	43
II.2.1.	Determination of Physicochemical parameters of water	
	samples	43
II.2.1.1.	Temperature (T)	43
II.2.1.2.	Hydrogen ion concentration (pH)	43
II.2.1.3.	Total Alkalinity (TA)	43
II.2.1.4.	Density (ρ)	43
II.2.1.5.	Transparency	44
II.2.1.6.	Turbidity	44
II.2.1.7.	Salinity (S), Electric Conductivity (EC) and Total	
TT 2 1 0	dissolved Salts (TDS)	44
II.2.1.8.	Chlorinity	44
II.2.1.9.	Dissolved Oxygen (DO)	45
II.2.1.10.	Biochemical Oxygen Demand (BOD ₅)	45
II.2.1.11.	Chemical oxygen Demand (COD)	46

Item No.	Subject	Page
II.2.1.12.	Oxidizable Organic Matter (OOM)	47
II.2.1.13.	Total Nitrogen (TN)	47
II.2.1.14.	Total Phosphorus (TP)	48
II.2.2.	Biochemical Parameters of fish Samples	49
II.2.2.1.	Biochemical assay in plasma	49
II.2.2.1.1.	Estimation of total antioxidant activity (TAA) in plasma (FRAP Assay)	50
II.2.2.1.2.	Determination of aspartate aminotransferase (AST) in	
	plasma	51
II.2.2.1.3.	Determination of alanine aminotransferase (ALT) in plasma	53
II.2.2.1.4.	Determination of alkaline phosphatase (ALP) in plasma	55
II.2.2.2.	Biochemical assay in tissues (Proximate analysis)	57
II.2.2.2.1.	Moisture content	57
II.2.2.2.2.	Ash content	58
II.2.2.2.3.	Crude protein	58
II.2.2.2.4.	Crude lipid	59
II.2.2.2.5.	Crude fiber	60
II.2.2.2.6.	Nitrogen free extract (NFE)	60
II.2.2.2.7.	Total Organic Carbon (TOC)	61
II.2.2.2.8.	Total Nitrogen (TN)	62
II.2.2.2.9.	Total Phosphorus (TP)	62
II.2.3.	Environmental pollutants	62
II.2.3.1.	Determination of Heavy metals	62
II.2.3.1.1	Heavy metals in water	63
II.2.3.1.2.	Heavy metals in fish samples	63
II.2.3.1.3.	Method validation and quality assurance	64
II.2.3.2.	Determination of organic pollutants (PAHs, OCPs and PCBs)	65
II.2.3.2.1.	Extraction from water and fish samples	65
II.2.3.2.2.	Determination of Petroleum Hydrocarbons (PAHs)	65
II.2.3.2.3.	Determination of Organochlorine pesticides (OCPs) and	
	Polychlorinated biphenyls (PCBs)	68
II.2.4.	Body Burden (Bioaccumulation factor, BAF)	69
II.3.	Statistical analysis	71
II.3.1.	Descreptive statistics	71

Item No.	Subject	Page
II.3.1.1.	Arithmetic mean	71
II.3.1.2.	Standard deviation	71
II.3.1.3.	Student (t)-test	71
II.3.1.4.	The correlation coefficient (r-value)	72
II.3.1.5.	Percentage of change	72
II.3.2.	Principle component analysis (PCA)	73
II.3.2.1.	Determination of water quality index (WQI)	73
II.3.2.2.	Evaluation of environmental pollutants in fish	74
	CHAPTER III	
III.	Results	75
III.1.	Physicochemical parameters of water samples	75
III.2.	Proximate analysis of fish tissues	84
III.3.	Total organic carbon (TOC), total nitrogen (TN) and total	0.2
TTT 4	phosphorus (TP) composition of fish tissues	92
III.4.	Biochemical assay in plasma	95
III.5.	Heavy metals	98
III.6.	Total hydrocarbons (THCs) and petroleum hydrocarbons	100
III.7.	(PAHs)	108
	biphenyls (PCBs)	119
III.8.	Bioaccumulation factors of environmental pollutants	130
III.9.	Principle component analysis (PCA)	133
III.9.1.	Water quality index (WQI)	133
III.9.2.	Evaluation of environmental pollutants in fish	134
	CHAPTER IV	
IV.	Discussion	141
IV.1.	Evaluation of water quality	141
IV.2.	Assessment of toxicity in fish tissues and bioaccumulation	1.40
TT / 0	factor (BAF)	148
IV.3.	Biochemical changes induced in response to Pollution	152
	Conclusion	158
	Recommendations	159
	Summary	160
	References	164
	Publications	
	Arabic Summary	
	Arabic Abstract	

ACKNOWLEDGMENTS

الحمد لله رب العالمين

Praise is to Allah, the lord of all creatures who taught man the whole science and the names of all things.

This Master would never have been completed without the efforts of several people who really I appreciate their instructive support.

I am greatly indebted to **Prof. Dr. Shadia Abdel Hamid Fathy**, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, Egypt and my supervisor for giving me the opportunity to perform this work under excellent working atmosphere, her encouragement, patience and interest that she showed in my work during the study period.

My special thanks are due to **Prof. Dr. Mohamed Attia Shreadah**, Professor of Marine Chemistry and President of The National Institute of Oceanography and Fisheries (NIOF) for his kind supervision, moral support, instructive guidance and kind advice.

No words can express my sincere gratitude to **Prof. Dr. Fatma Farag Abdel Hamid**, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, Egypt for her guidance and help during the preparation for this work, assisting me during the research activities, for creative ideas, and especially for the careful reading of my thesis. I found her a true academician and I will always remember her with respect.

Special thanks are extended to **Prof. Dr. Tarek Othman Said**, Professor of Marine Chemistry, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt for his participation in the this study, his encouragement and his great support at the beginning of my practical work. I closely worked with him throughout the all stages of this study and I found in him a decent, kind and a

ACKNOWLEDGEMENTS

greatly respective person. I would like to thank him very much for his guide during the practical work.

I am grateful to all my colleagues in NIOF especially **Prof. Dr. Laila Abdel Fattah**, the head of central laboratories unit, for providing a good working environment, working assistance whenever necessary, and for sharing their scientific knowledge.

I would also like to sincerely thank my parents, brother and sister for their support, encouragement and for all love, continuous support and prayers.

Mohamed Gamal El-Gazar

ABSTRACT

Biochemical markers are a popular measure of toxic effects on organisms due to their assumed fast response and are usually assessed after acute exposure of the organism to the stressor xenobiotics.

This study aimed to measure heavy metals (Fe, Cu, Zn, Pb, Cd and Hg), total hydrocarbons (THCs), polyaromatic hydrocarbons (PAHs), pesticides (OCPs) and polychlorinated biphenyls (PCBs) toxicity incidence on *Tilapia niloticus*. Biomarkers such as total antioxidant activity (TAA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphotase (ALP) activities in blood plasma, in addition to the total proteins and lipids in *T. niloticus* tissues (muscles and liver) have been investigated. The resulting data was subjected to statistical analyses in order to assess water quality index (WQI) and its impacts on biochemical functions of Tilapia collected from three different hot spot sites (Nubaria, Umoum and Kilo 21).

Principle component analysis (PCA) used to evaluate both the hot spot sites and the highly affected groups, in addition to the origin of pollution in each site and group. This study highlights the importance of using a set of integrated biomarkers to assess the some environmental pollutants toxicity in *Tilapia niloticus*. The results showed that pollutants induced a significant increase in the total proteins and total lipids content in the muscle and liver tissues. Total Cyclodienes (TC), Pb, Cd, hexachlorocyclohexanes (HCHs), Hg and organochlorine pesticides (OCPs) were shown to be accumulated higher than other environmental pollutants in both muscle and liver. Origin of pollution in liver tissues of group I during summer was related to Zn, Pb, Hg and PCBs. ALT, AST, ALP activities and TAA increased significantly (p≤0.01) indicating tissues damage in groups appeared to be highly affected by pollutants as indicated by PCA.

In conclusion, the studied groups could be arranged in the following order according to pollutants loading: Group I (Nubaria) > Group II (Umoum) > Control group (Kilo 21) and that was confirmed by WQI values. It is recommended to take care when using Nile Tilapia from those sites for human consumption as it accumulates pollutants in liver and muscles.

AAS Atomic Absorption Spectrophotometer.

Ace Acenaphthene.

Acthy Acenaphthylene.

Ag Silver.

ALA Aminolevulinate dehydratase.

ALKP Alkaline phosphatase.

ALP Alkaline phosphatase.

ALT Alanine aminotransferase.

Ant Anthracene.

ANZECC Australian and New Zealand Environment Conservation

Council.

AOAC Association of Official Agricultural Chemists.

APDC Ammonium pyrrolydine dithiocarbamate.

APHA American Public Health Association.

As Arsenic.

AST Aspartate aminotransferase.

BaA Benzo(a)anthracene.

BAF Bioaccumulation factor.

BAM Bioaccumulation monitoring.

BaP Benzo(a)pyrene.

BbF Benzo(b)fluoranthene.

BCM Billion Cubic Metres.

Be Beryllium.

BEM Biological effect monitoring.

BghiP Benzo(ghi)perylene.

Bi Bismuth.

BkF Benzo(k)fluoranthene.

BOD Biochemical Oxygen Demand.

CARC Carcinogenic polyaromatic hydrocarbons.

Cd Cadmmium.
Chr Chrysene.

CM Chemical monitoring.

COD Chemical Oxygen Demand.

COMB Combustion polyaromatic hydrocarbons.

Cu Copper.

CV Cumulative variance. **DBA** Dibenz(a,h)anthracene.

DDTs Dichlorodiphenyltrichloroethanes.DIDW Deionized double distilled water.

DL Detection limit.

DNA Deoxyribonucleic acid.

DO Dissolved Oxygen.EC Electric Conductivity.

EDTA Ethylenediaminetetraacetic acid.

EEAA The Egyptian Environmental Affairs Agency.

EIMP Environmental Information and Monitoring Program.

EM Ecosystem monitoring.

EPA Environmental Protection Agency.

EOS Egyptian organization of standardization and quality.

ERA Environmental Risk Assessment.

FAA Flame atomic absorption.

FAAS Flame Atomic Absorption Spectrophotometer.

FAO Food and Agriculture Organization.

FAS Ferrous ammonium sulfate.

Fe Iron.

Flu Fluoranthene.

FDA Food and Drug Administration.

FRAP Ferric Reducing Antioxidant Power.

GC-MS Gas Chromatograph-Mass Spectrometer.

GPS Global Positioning System.

HCHs Hexachlorocyclohexanes.

Hg Mercury.

HM Health monitoring.

IAEA International Atomic Energy Agency.

InP Indeno(1,2,3-cd)pyrene.

IOC Intergovernmental Oceanographic Commission.

IU International unit.

K Length-weight relationship.

LDH Lactate dehydrogenase.

LOD Limit of detection.

LOL Limit of linearity.

LPO Lipid peroxidation.

LSI Liver Somatic Index.

m/z ratio Mass-to-charge ratio.

MDH Malate dehydrogenase.

MIBK Methyle isobutyle ketone.

MPL Maximum permissible limit.mRNA Messenger ribonucleic acid.MVU Mercury Vaporization Unit.

MWRI Ministry of water and Irrigation.

N.S. Non significant.

NADH Nicotinamide adenine dinucleotide.

Naph Naphthalene.

NAS-NAE National Academy of Science.

NFE Nitrogen free extract.

ng Nanogram.

NIST National Institute of Standards and Technology.

nm Nanometer.

NRCC National Research Council of Canada.

NTU Nephelometer Turbidity Unit.

o,p'-DDD
 o,p'-1,1-dichloro-2, 2-bis (4-chlorophenyl) ethane.
 o,p'-DDE
 o,p'-1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene.
 o,p'-DDT
 o,p'-1,1,1-trichloro-2, 2-bis (4-chlorophenyl) ethane.

OCPs Organochlorine pesticides.

OD Optical density.

OOM Oxidizable Organic Matter.

p,p'-DDD
 p,p'-1,1-dichloro-2, 2-bis (4-chlorophenyl) ethane.
 p,p'-DDE
 p,p'-1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene.
 p,p'-1,1,1-trichloro-2, 2-bis (4-chlorophenyl) ethane.

PAHs Polycyclic Aromatic Hydrocarbons.

Pb Lead.

PC Principle component factor.