INTRAOPERATIVE ASSESSMENT OF CARDIAC OUTPUT

An essay submitted for partial fulfillment of Master Degree in anesthesiology

BY

MOHAMMED SOBHY ABDEL MONE'M

M.B.B.Ch

UNDER THE SUPERVISION OF

Prof. Dr. MOHAMMED ALI AHMED ZAGHLOL

Professor of Anesthesiology and Intensive Care Medicine
Faculty of Medicine
Ain Shams University

Prof. Dr. FAHMY SAAD LATIF

Professor of Anesthesiology and Intensive Care Medicine
Faculty of Medicine
Ain Shams University

Dr. FADY ADIB ABD EL MALEK

Lecturer of Anesthesiology and Intensive Care Medicine
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2013

Acknowledgment

This study would not have been possible without the support of many people. Very special thanks to my supervisors, Prof. Dr. MOHAMMED ALI AHMED ZAGHLOL, and Prof. Dr. FAHMY SAAD LATIF who were abundantly helpful and offered invaluable assistance, support, and guidance.

Deepest gratitude is also due to Dr. FADY ADIB

ABD EL MALEK, without his knowledge and assistance
this study would not have been successful.

I wish to express my love and gratitude to my beloved families: for their understanding and endless love, through the duration of this study.

Contents

Introduction	1
Aim of the Work	3
Chapter One: Physiological Basis of Cardiac Output	4
Chapter Two: Invasive Methods (PAC- Based Methods)	21
Indications of Cardiac Output Measurement	22
D. Lancardo A. Arra, Carllando	22
Pulmonary Artery Catheter	33
Chapter Three: Non-Invasive and Minimally Invasive	65
Methods	03
Pulse Contour-Derived Cardiac Output	66
- salar control of the salar c	
Cardiac Output Measurement by Ultrasound	85
Technology	
Cardiac Output Derived from Bio-impedance	103
	100
Differential CO ₂ Partial Rebreathing Technique	109
Summary	116
Summer y	110
References	119
المُلخّص العربي	131

List of Figures

Figure 1	Relationship between left ventricular	Page 5
	volume and intra-ventricular	
	pressure during diastole and systole	
Figure 2	Starling's law of the heart	Page 9
Figure 3	Effect of changing preload (EDV) on	Page 10
	stroke volume (SV) at constant	C
	inotropy(contractility), illustrated on	
	the pressure-volume diagrams	
Figure 4	Effect of changing afterload on	Page 13
	stroke volume (SV) at constant	C
	inotropy(contractility), illustrated on	
	the pressure-volume diagrams	
Figure 5	Effect of changing contractility on	Page 14
	stroke volume, illustrated on	_
	pressure-volume diagram.	
	Contractility is represented by	
	maximal elastance	
Figure 6	Autonomic control of cardiovascular	Page 17
	system	_
Figure 7	Baroreceptor reflex	Page 19
Figure 8	Standard pulmonary artery catheter	Page 33
Figure 9	Right internal jugular cannulation	Page 34
	with Seldinger's technique	_
Figure 10	Characteristic intracardiac pressure	Page 35
	waveforms during passage of PAC	_
	through the heart	
Figure 11	An illustration of the Fick principle	Page 47

Figure 12	Relative change in cardiac index	Page 49
	versus change in mixed venous	
	oxygen saturation	
Figure 13	Three principle phases of indicator	Page 50
	dilution	
Figure 14	Typical thermodilution curve	Page 54
Figure 15	Setup for CO measurement by	Page 58
	thermodilution	_
Figure 16	Continuous cardiac output (CCO)	Page 62
	monitor display using The Vigilance	C
	II system	
Figure 17		Page 69
	properties in generating the aortic	G
	pressure waveform	
Figure 18	Changes in pulse pressure variation	Page 71
g	with respiration with mechanical	-
	ventilation	
Figure 19	Comparison of thermodilution curves	Page 73
	after injection of cold saline into the	8- /-
	superior vena cava	
Figure 20	Schematic diagram of the	Page 75
11941020	LiDCO/PulseCO system	1 1150 70
Figure 21	photograph showing the practical	Page 77
	setup of the Finapres finger cuff,	I uge //
	which uses Finometer MIDI	
	hardware	
Figure 22	The Flo Trac/Vigileo continuous	Page 82
riguit 22	cardiac output monitor which is	1 age 02
	connected to the arterial line	
Figure 23	The PiCCO system	Page 83
	Illustration of terms used to describe	
Figure 24		Page 86
	transmission of ultrasound energy	
	from a transducer into adjacent	
E: 25	tissue Madagas sultura sangal	D 07
Figure 25	Modes of ultrasound	Page 87

Figure 26	Doppler ultrasound	Page 88
Figure 27	Comparison of continuous wave and pulsed wave Doppler interrogation methods	Page 89
Figure 28	Mid-upper esophageal echo imaging of the aortic valve	Page 90
Figure 29	Mid-lower esophageal echocardiographic imaging	Page 91
Figure 30	Transgastric echocardiographic views	Page 91
Figure 31	Esophageal Doppler	Page 94
Figure 32	Principle of stroke volume calculation from aortic velocity measurements	Page 96
Figure 33	Complete visualization of the ascending aorta	Page 98
Figure 34	Pulsed wave Doppler echo- cardiogram of the main pulmonary artery	Page 99
Figure 35	Multi-plane TEE trans-gastric LVOT view	Page 100
Figure 36	Thoracic bioimpedance	Page 104
Figure 37	Characteristic waveforms for thoracic bioimpedance monitoring	Page 105
Figure 38	NOVA NICO rebreathing circuit	Page 110
Figure 39	Carbon dioxide dissociation curve	Page 113
Figure 40	Isoshunt curves showing the effect of varying amounts of shunt on PaO2	Page 114

List of Tables

Table 1	Detsky's Modified Cardiac Risk Index	Page 26
Table 2	Predictors of Cardiac Risk	Page 27

List of Abbreviations

CO	Cardiac output
CI	Cardiac Index
SV	Stroke Volume
HR	Heart Rate
EDPVR	End-Diastolic Pressure Volume Relationship
ESPVR	End-Systolic Pressure Volume Relationship
CVP	Central Venous Pressure
PCWP	Pulmonary Capillary Wedge Pressure
EDV	End-Diastolic Volume
SVR	Systemic Vascular Resistance
MAP	Mean Arterial Pressure
PVR	Pulmonary Vascular Resistance
EF	Ejection Fraction
AV	Atrio-Ventricular
SA	Sino-Atrial node
node	
ASA	American Society of Anesthesiologists
PAC	Pulmonary Artery Catheter
MI	Myocardial Infarction
VSR	Ventricular Septal Rupture
ARDS	Acute Respiratory Distress Syndrome
ARF	Acute Renal Failure
SIRS	Systemic Inflammatory Response Syndrome
PAP	Pulmonary Artery Pressure
IJV	Internal Jugular Vein

PVC	Premature Ventricular Contraction
VT	Ventricular Tachycardia
LBBB	Left Bundle Branch Block
RBBB	Right Bundle Branch Block
RV	Right Ventricle
IVC	Inferior Vena Cava
VSD	Ventricular Septal Defect
CV	Central Venous
СРВ	Cardio-Pulmonary Bypass
CCO	Continuous Cardiac Output by Thermo- Dilution
VO ₂	Oxygen Consumption
CaO ₂	Arterial Oxygen Content
CvO ₂	Mixed Venous Oxygen Content
SaO ₂	Arterial Oxygen Saturation
SvO ₂	Mixed Venous Oxygen Saturation
FiO ₂	Fraction of Inspired Oxygen
PA	Pulmonary Artery
CABG	Coronary Artery Bypass Graft
TDCO	Thermo-Dilution Cardiac Output
RA	Right Atrium
TR	Tricuspid Regurgitation
SVV	Stroke Volume Variation
PPV	Pulse Pressure Variation
TCPTD	Trans-Cardio-Pulmonary Thermo-Dilution
LiDCO	Lithium Dilution Cardiac Output

$f_{ m dop}$	Doppler Frequency Shift
CW	Continuous Wave
PW	Pulsed Wave
TEE	Trans-Esophageal Echocardiography
VTI	Velocity Time Integral
CSA	Cross-Sectional Area
2D	2 Dimensional
LVOT	Left Ventricular Outflow Tract
LVET	Left Ventricular Ejection Time
VCO ₂	Elimination of CO ₂
CaCO ₂	Arterial CO ₂ Content
CvCO ₂	Venous CO ₂ Content
etCO ₂	End-Tidal CO ₂

INTRODUCTION

Hemodynamic monitoring is a cornerstone of care for the hemodynamically unstable patients, but it requires a manifold approach and its use is both context and disease specific. One of the primary goals of hemodynamic monitoring is to alert the health care team to impending cardiovascular crisis before organ injury ensues; it is routinely used in this manner in the operating room during high-risk surgery. (*Pinsky et al.*, 2005)

The effectiveness of hemodynamic monitoring depends both on available technology and on the ability to diagnose and effectively treat the disease processes for which it is used. The utility of hemodynamic monitoring has evolved as it has merged with information technology and as our understanding of disease pathophysiology has improved. (Pinsky et al., 2005)

Cardiac output, expressed in liters/minute, is the amount of blood the heart pumps in one minute. Cardiac output is logically equal to the product of the stroke volume and the number of beats per minute (heart rate). (Vincent, 2008)

An accurate and reliable technique for measuring cardiac output would be of considerable value both in research and clinical medicine. Ideally, such a technique should be non-invasive, versatile, reliable, cost-effective, and easy-to-use. (Spiering et al., 1998)

Indicator dilution techniques using thermal, indocyanine green, and lithium can measure blood flow from both central venous and pulmonary artery catheter (PAC). Left ventricular stroke volume can be estimated using a beat-to-beat based, algorithmic analysis of arterial pulse pressure. Several monitoring techniques use subtle variations in this concept to calculate stroke volume and cardiac output. The overall accuracy of these techniques varies. Esophageal Doppler techniques can be used to measure descending aortic flow and to estimate both stroke volume and cardiac output. (*Pinsky et al.*, 2005)

Cardiac output is routinely monitored in critically ill patients with the primary goal of maintaining adequate tissue perfusion. In most patients in the surgical settings, thermodilution using a pulmonary artery catheter is still the most frequently applied technique and has generally been accepted as the clinical gold standard. However, the value of the pulmonary artery catheter has been questioned in recent years, and its impact on outcome is controversial. More recently, several less-invasive techniques that avoid the risks associated with the pulmonary artery catheter have become available for routine cardiac output monitoring. These devices include continuous monitors that use arterial pressure waveform analysis to estimate cardiac output and other hemodynamic parameters. (Auler et al., 2010)

The trans-esophageal Doppler echocardiography is based on measurement of blood flow velocity in the descending aorta by means of a Doppler transducer (4 MHz continuous or 5 MHz pulsed wave, according to the type of device) at the tip of a flexible probe. The probe may be introduced orally in anaesthetized, mechanically ventilated patients. (Berton et al., 2002)