ESTIMATION OF CD4+, CD25+ FOXP3+ CELLS IN CHILDREN WITH TYPE 1 DIABETES

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Submitted By

Mohamed Samir Mohamed Ragheb *M.B.,B.Ch.*

Under Supervision of

Prof. Dr. Mona Abdel Kader Salem

Professor of Pediatrics
Faculty of Medicine -Ain Shams University

Prof. Dr. Mohamed Aboelasrar Mohamed

Professor of Pediatrics
Faculty of Medicine -Ain Shams University

Dr. Dalia Mohamed Ibrahim

Lecturer of Pediatrics
Faculty of Medicine -Ain Shams University

Faculty of Medicine Ain Shams University 2012

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vi
Introduction	1
Aim of the work	4
Review of Literature	
Diabetes Mellitus	5
o T1DM	9
o Prevention of T1D	35
o Management of Type 1 Diabetes	38
• Regulatory CD4 ⁺ CD25 ⁺ FOX P3 ⁺ T ce	lls45
 Definition and characterization 	45
o Function of regulatory T cells	49
o Identification of treg cells	57
 Naturally occurring regulatory T cell 	lls58
o Induced regulatory T cells	61
Subjects and Methods	66
Results	74
Discussion	95
Summary	107
Conclusion	110
Recommendations	111
References	112
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1): Etiological c	lassification of diabetes	mellitus6
	ic features of type 1 co	ompared with type 2
Table (3): Criteria for the	he diagnosis of diabetes	mellitus33
	insulin preparations are manufacturers	
. ,	d glucose and A1C goal	s for type 1 diabetes45
	between patients and co	ontrols as regards the75
Table (7): Demographic	c and clinical data of the	patients group76
	between patients and s.	controls as regards77
	of the type of treatment	of diabetes received79
	microvascular complicat	ions of the studied80
Table (11): Description of	of the anthropometric data	of the studied cases81
<u> </u>	n between the studied grements.	oups as regards their82
	on between patients and	controls as regards84
_	between complicated and neters	non complicated cases86
	of the percentage of the	e patients at different87
	petween glycemic control	ol and percentage of87
	between glycemic control ry cells among patients.	ol and percentage of88
Table (18): Relation b CD4+CD25 ^{+high} among	petween glycemic control	ol and percentage of88

List of Tables (Cont..)

Table No.	Title	Page No.
- · · · · · ·	n between different studied	1
	n between the percentage of and laboratory parameters in	9
regulatory cells and so	n between the percentage of the studied clinical param	neters in the patients
Table (22): Correlatio	n between the percentage eters in the patients group.	of CD4+% and the

List of Figures

Page No.	Title	Figure No.
Figure (1): The global prevalence est	imates of diab	etes in 200710
Figure (2): The global prevalence est	imates of diab	etes in 202511
Figure (3): Pathogenesis of type 1 di	abetes	12
Figure (4): Schematic representation against pancreatic β cells		
Figure (5): Beta-cell mass at various diabetes	_	
Figure (6): Natural history of type 1	diabetes melli	us32
Figure (7): T1DM stages and interve	ntions	36
Figure (8): Treatment of diabete guidelines, 2007		
Figure (9): Proposed functions of reg	gulatory T cell	s50
Figure (10): T regulatory (Treg) ce reaction		
Figure(11): T regulatory (Treg immunotherapy		
Figure (12): Flowcytometric p lymphocytes		
Figure (13): Flowcytometric picture lymphocytes	•	
Figure (14). An example of flow method for the assessment of CD4+C	cytometry re D25 ^{high}	sult showing the73
Figure(15): Distribution of family patients.	•	
Figure (16): Distribution of differ received by the patients.		79
Figure (17): The comparison between regards their means of height, weight	-	and controls as
Figure (18): Flow cytometry report of CD4+CD25+is (45). And the % of CD4		
Figure (19): Flow cytometry report of of CD4+CD25+is (57.5). And the % of	one of the control CD4+CD25+h	rol subjects. The % gh is (3.7)85

List of Figures (Cont..)

Page No.	Title	Figure No.	
Figure (20): Comparison between comcases as regards their CD parameters	•	•	86
Figure (21): Scatter diagram showing percentage of CD4+CD25+ ^{high} and haer	g correlation noglobin A1C	between mean in diabetics	89
Figure (22): Scatter diagram showing percentage of CD4+CD25+and haemoglo	•		90
Figure (23): Scatter diagram showing the percentage of CD4 +CD25 ⁺ and BMI in pa			92
Figure (24): Scatter diagram showing the percentage of CD4 +CD25 ⁺ and insulin do			92
Figure (25): Scatter diagram showing the percentage of CD4 +CD25 ⁺ and the duration			93
Figure (26): Scatter diagram showing the percentage of CD4 +CD25 ⁺ and age of pat			93
Figure (27): Scatter diagram show between the mean percentage of CD4+C			94

List of Abbreviations

ADA	American Diabetes Association
APCs	Antigen Presenting Cells
BMI	Body Mass Index
BSA	bovine serum albumin
CD	Cluster of Differentiation
CTLA-4	Cytotoxic T lymphocyte associated factor-4
DC	Dendritic Cell
DCCT	Diabetes Control and Complications Trial
DKA	Diabetic Ketoacidosis
DM	Diabetes Mellitus
DNA	Deoxyribonucleic acid
DPT-1	Diabetes Prevention Trial-1
EAE	Experimental autoimmune encephalomyelitis
ENDIT	The European Nicotinamide Diabetes Intervention Trial
Foxp3	Forkhead box protein 3
FPG	Fasting plasma glucose
GAD65	Glutamic Acid Decarboxylase isoform 65
GALT	Gutassociated lymphoid tissue
GDM	Gestational diabetes mellitus
GITR	Glucocorticoid-induced TNF receptor
GRAIL	Gene related to anergy in lymphocytes
Hb	Hemoglobin
HbA1c	Glycosylated Hemoglobin
HDL	High density lipoprotein
HLA	Human Leucocytic Antigen
IA2	Insolinoma Associated Antigen -2
IAA	Insulin Auto-Antibody
IBD	Inflammatory bowel disease
ICA	Islet Cell Antibody
IDDM	Insulin Dependant Diabetes Mellitus
IFG	Impaired fasting glucose
IFN	Interferon
IGT	Impaired Glucose Tolerance
IL	Interleukin
IPEX	Immune dysregulation, polyendocrinopathy, Enteropathy
	X-linked syndrome
ISPAD	International Society for Pediatric and Adolescent
	Diabete
IVGTT	Intra Venous Glucose Tolerance Test
Jak	Janus kinase

List of Abbreviations (Cont...)

Kip1 Cyclin-dependent kinase inhibitor p27

LDL..... Low density lipoprotein MAP..... Mitogen-activated protein

MHC Major Histocompitabilty Complex MODY Maturity-Onset Diabetes of the Young

MRBG..... Mean random blood glucose

MS..... Multiple Sclerosis NK..... Natural killer

OGTT...... Oral Glucose Tolerance Test
PI3K..... Phosphatidylinositol 3-kinase
PTPN22..... Phosphatase non-receptor type 22

RA...... Rheumatoid arthritis
RBCs..... Red Blood Corpuscles
RNA.... Ribonucliec acid
SD..... Standered Deviation

SLE Systemic Lupus Erythematosus SMBG..... Self Monitoring Blood Glucose

T1D...... Type 1 Diabetes TCR..... T cell Receptor

TGF...... Transforming growth factor
Th1&Th2 T helper 1&T helper 2
TLC..... Total Leukocytic Count
TNF..... Tumor Necrosis Factor

Treg..... T regulatory cell

VNTR variable numbers of tandem repeat

WHO...... World Health Organization

Wt Weight

INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic disorder caused by an absolute or relative deficiency of insulin, an anabolic hormone. Insulin is produced by the beta cells of the islets of Langerhans located in the pancreas, and the absence, destruction, or other loss of these cells results in type1 diabetes (*Lamb*, 2011).

Most diabetic cases fall under the Type 2 category, characterized by relatively late onset, development of insulin resistance and/or deficiency, and amyloidosis. Type 1 diabetes, on the other hand, manifests early during childhood and has an autoimmune component to it that causes a severe deficiency in the circulating levels of insulin. Despite the heterogeneity in etiology and clinical presentation, hyperglycemia is the most common metabolic abnormality in diabetic patients (*Lee and Pervaiz*, 2007).

Type 1 diabetes (T1D) is an autoimmune disease resulting from the destruction of insulin-producing pancreatic β cells by autoreactive T cells. Self-reactive CD4+ and CD8+ T lymphocytes infiltrate the pancreas (insulitis) and selectively destroy the insulin producing beta-cells in the islets. This destruction occurs 'silently and progressively' and may stay undetected for many years (*Chentoufi et al., 2008*). Susceptible genes and environmental factors are important in the disease process, but the pathological mechanisms are still unknown

(Knip et al., 2005). Failure of immunoregulatory cells in maintaining peripheral tolerance to β cells is one plausible hypothesis (Piccirillo & Thornton, 2004).

T-cell tolerance is established centrally in the thymus and further strengthened and maintained through multiple mechanisms of peripheral tolerance (Walker and Abbas, 2002). An interest has focused on a feature of tolerance that seems to bridge the central and peripheral processes, namely the CD4⁺CD25⁺ regulatory T-cell (*Sakaguchi*, 2000). T regulatory cells modulate a response to autoantigens and probably play a role in pathogenesis of type 1 diabetes (Bluestone et al., 2008).

Naturally occurring regulatory T cells arise during the normal process of maturation in the thymus (Dejaco et al., 2006). CD4⁺CD25⁺ cells can be detected in peripheral blood in humans and are able to suppress proliferation and cytokine production from both CD4 and CD8 T-cells in vitro in a cell contact-dependent manner (*Piccirillo and Shevach*, 2001).

Although, islet infiltrates have shown the presence of cytotoxic effector T-cells and pro-inflammatory cytokines (Donath et al., 2003). There is still a major void in our understanding of how these effector cells escape peripheral regulation (Jailwala et al., 2009).

There is accumulating evidence of a deficiency in either the frequency or function of regulatory T-cells in various human autoimmune diseases (Bacchetta et al., 2007).

Results concerning the role of T regulatory cells in the pathogenesis of diabetes are diverse. Further more both the experimental and clinical studies are required including the use of those cells in immunotherapy. Most authors observed the lack of number and/or function of T regulatory cells in type 1 diabetes (Luczyński et al., 2009).

AIM OF THE STUDY

To evaluate the contribution of T regulatory cells in the pathogenesis of type 1 diabetes, through determination of the count and percentage of CD4⁺CD25⁺ in the blood.

Hypothesis

It is hypothesized that a relative defect of the number of regulatory T-cells (CD4+CD25) is estimated in type 1 diabetes.

Definition:

Diabetes Mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia, resulting from defects in insulin secretion, insulin action or both. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction and failure of various organs, especially the eyes, kidneys, nerves, heart and blood vessels (American Diabetes Association, 2010). It is the most common endocrine – metabolic disorder of childhood and adolescence (Sperling, 2000).

DIABETES MELLITUS

Diabetes mellitus has metabolic, vascular and neuropathic components that are interrelated; this makes DM a major health problem with long-term microvascular and macrovascular complications. The development and progression of diabetic complications are strongly related to the degree of glycemic control (Özmen and Boyuada, 2003).

Classification:

WHO classified D.M. into clinical (normoglycemia, IGT/IFG, diabetes), and etiological types (*Pickup and Williams*, 2003).

Table (1): Etiological classification of diabetes mellitus.

- I. Type 1 diabetes (β-cell destruction, usually leading to absolute insulin deficiency)
 - A. Immune mediated
 - B. Idiopathic
- Type 2 diabetes (may range from predominantly insulin resistance II. with relative insulin deficiency to a predominantly secretory defect with insulin resistance)
- III. Other specific types
 - A. Genetic defects of ß-cell function:
 - 1. Chromosome 12, HNF-1\alpha (MODY3)
 - 2. Chromosome 7, glucokinase (MODY2)
 - 3. Chromosome 20, HNF-4α (MODY1)
 - 4. Chromosome 13, insulin promoter factor-1 (IPF-1; MODY4)
 - 5. Chromosome 17, HNF-1ß (MODY5)
 - Chromosome 2, Neuro D1 (MODY6) 6.
 - 7. Mitochondrial DNA
 - 8. Others
 - В. Genetic defects in insulin action:
 - Type A insulin resistance 1.
 - 2. Leprechaunism
 - 3. Rabson-Mendenhall syndrome
 - Lipoatrophic diabetes

Continued

- C. Diseases of the exocrine pancreas:
 - 1. **Pancreatitis**
 - 2. Trauma/pancreatectomy
 - 3. Neoplasia
 - 4. Cystic fibrosis
 - 5. Hemochromatosis
 - 6. Fibrocalculous pancreatopathy
 - 7. Others
- D. Endocrinopathies:
 - Acromegaly 1.
 - 2. Cushing's syndrome
 - 3. Glucagonoma
 - Pheochromocytoma 4.
 - 5. Hyperthyroidism

- 6. Somatostatinoma
- 7. Aldosteronoma
- 8. Others
- Drug- or chemical-induced: E.
 - Vacor 1.
 - 2. Pentamidine
 - 3. Nicotinic acid
 - 4. Glucocorticoids
 - 5. Thyroid hormone
 - Diazoxide 6.

Continued

- 7. Thiazides
- 8. Dilantin
- 9. α-Interferon
- 10. Others
- F. Infections:
 - 1. Congenital rubella
 - 2. Cytomegalovirus
 - 3. Others
- G. *Uncommon forms of immune-mediated diabetes:*
 - 1. "Stiff-man" syndrome
 - 2. Anti-insulin receptor antibodies
 - 3. Others
- Н. Other genetic syndromes sometimes associated with diabetes:
 - Down's syndrome 1.
 - 2. Klinefelter's syndrome
 - 3. Turner's syndrome
 - 4. Wolfram's syndrome
 - 5. Friedreich's ataxia
 - 6. Huntington's chorea
 - 7. Laurence-Moon-Biedl syndrome
 - 8. Myotonic dystrophy
 - 9. Porphyria
 - Prader-Willi syndrome 10.
 - 11. Others
- IV. Gestational diabetes mellitus (GDM)

(ADA, 2007).