Antioxidant and Antidiabetic Activities of Terminalia Chebula Fruit on Induced Diabetes in Rats

Thesis

For the Award of the Degree of Ph. D.

In Biochemistry

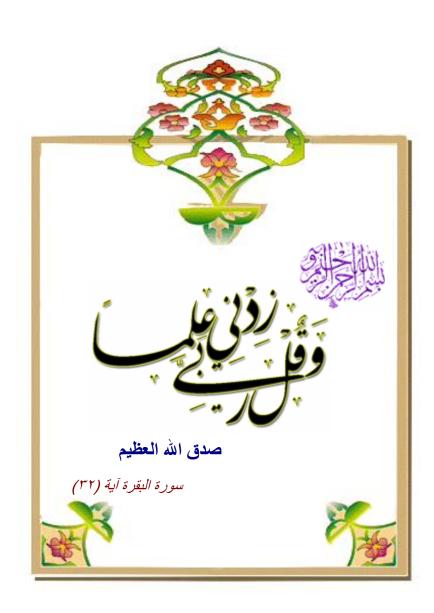
Submitted by

Monira Mohamed Mostafa El Refaey

M.Sc., Biochemistry (Υ··٤)

Under Supervision of

Prof. Dr. Shadia Abdel Hamid Fathy Prof. Dr. Fatma Farag Abdel Hamid


Professor of Biochemistry Faculty of Science Ain Shams University Professor of Biochemistry
Faculty of Science
Ain Shams University

Dr. Osama Ahmed Abbas Lecturer of Biochemistry Nuclear Research Center (NRC) Atomic Energy Authority (AEA) Dr. Asrar Mohamed Hawas
Lecturer of Physiology
National centre for Radiation Research&
Technology
Atomic Energy Authority (AEA)

I declare that this thesis has been composed by myself and the work which is recorded has been done by myself.

It hasn't been submitted for a degree at this or this in other university.

Monira Mohamed Mostafa El Refaey

CONTENTS

			Page
		ACKNOWLEDGMENT	
		LIST OF ABBREVIATION	
		LIST OF TABLES	
		LIST OF FIGURES	
		ABSTRACT	
١		INTRODUCTION	١
۲		AIM OF THE WORK	٣
٣		REVIEW OF LITERATURE	٤
	٣,١	Diabetes mellitus	٤
	٣,٢	Metabolic disturbance in man	٥
	٣,٢,١	Carbohydrate metabolism	٥
	٣,٢,٢	The Sorbitol pathway	٨
	٣,٢,٣	Disturbances in lipid metabolism	٩
	٣,٣	Triacylglycerol secretion and clearance	١.
	٣, ٤	Diabetes and environmental pollution	١٢
	٣,٤,١	Diabetes and arsenic or	١٤
	7-1-1	Mercury exposure	١٤
	۳,٥	Complications of Diabetes mellitus	١٤
	٣,٦	Pharmacological treatment	10
	٣,٦,١	Oral treatment	10
	٣,٦,٢	Pharmacology of insulin	1 ٧
	٣,٧	Hormone action in man	١٨
	۳,۷,۱	Mechanism of insulin action	١٨
	٣,٧,٢	Insulin resistance	۲.

		Page
٣,٨	Advanced glycation end products	۲ ٤
٣,٩	Alterations in glutathione metabolism	70
٣,٩,١	Glutathione homeostasis	70
٣,٩,٢	Glutathione dependent enzymes	77
۳,۱۰	Impairment of superoxide dismutase and catalase activity	* V
۳,۱۱	Lipid Peroxidation and protein oxidation in diabetes	٣.
	mellitus	
۳,۱۱,۱	Lipid peroxidation in diabetic patients	٣.
٣,١١,٢	Susceptibility of LDL- cholesterol to oxidation	۳ ٤
٣,١٢	The pancreatic islet:	٣0
۳,۱۲,۱	physiology and pathopysiology	٣0
٣,١٢,٢	Reactive oxygen species formation and regulation	٣٧
٣,١٢,٣	Hyperglycemia and oxidative stress	٣٨
٣,١٣	Terminalia chebula	٣٩
٣,١٤	Ecology and Distribution	٤١
٣,١٤.١	History of cultivation	٤١
٣,١٤,٢	Natural Habitat	٤١
٣,١٤,٣	Botanic Description	٤١
٣,1٤,٤	Species in Ayurveda	٤٢
۳,۱٥	Chemical constituents	٤٣
٣,١٦	Biological and Pharmacological activities of Terminalia	
	chebula	٤٥
۳,۱٦.۱	Antibacterial activity	٤٥
٣,١٦.٢	Antifungal activity	٤٦
٣,١٦.٣	Antiviral activity	٤٦
٣,١٦.٤	Antimutagenic/anticarcinogenic activity	٤٧

			Page
	۳,۱٦.٥	Antioxidant activity	٤٧
	٣,١٦,٦	Adaptogenic and antianaphylactic activities	٤٨
	٣,١٦.٧	Hypolipidemic / Hypocholesterolemic acivity	٤٨
	٣,١٦,٨	Gastrointestinal motility improving and antiulcerogenic	
		Activity	٤٨
	٣,١٦,٩	Hepatoprotective activity	٤٩
	۳,۱٦,۱۰	Cardioprotective activity	٤٩
	٣,١٦,١١	Cytoprotective activity	٤٩
	٣,١٦,١٢	Radioprotective activity	٥.
	٣,١٦,١٣	Antispasmodic activity	٥.
	٣,١٦,١٤	Wound healing activity	٥.
	۳,۱٦,۱٥	Antiamoebic activity	٥١
	٣,١٦,١٦	Chemopreventive activity	٥١
	٣,١٦.١٧	Anthelmintic activity	٥١
	۳,۱٦.۱۸	Antidiabetic and retinoprotective activity	٥٢
	٣,١٧	Contraindications	٥٢
	٣,١٨	Safety Evaluation	٥٣
	٣.19	Triphala	٥٤
٤		Materials and Methods	٥٦
	٤,١	Animals	٥٦
	٤,١,١	Chemical Treatments	٥٦
	٤,١,٢	Design of the experiments	٥٨
	٤,٢	Methods	٦.
	٤,٢,١	Determination of serum glucose	٦.
	٤,٢,٢	Kidney function tests	٦١
	٤,٢,٣	Liver function tests	77

Contents

		Page
٤,٢,٤	Lipid profile tests	٦٤
٤,٣	Radioimmunoassay Techniques	٦٧
	Determination of Insulin in Serum	٦٧
٤,٤	Determination of lipid peroxidation level	٦٨
٤,٥	Determination of superoxide dismutase in liver	٦٩
٤,٦	Determination of glutathione content in liver	V Y
٤,٧	Total free radicals assay by electron spin resonance	
	technique ESR	٧٣
2/3	Terminalia chebula	٧٧
	phytoconstituents	
	Statisticals Analysis of Data	۸٠
	Results	٨٣
	Discussion	۱۱۸
	Conclusion and Recommendations	۱۳.
	Summary	۱۳۱
	References	١٣٦
	Arabic summary	

Acknowledgement

First and foremost thanks to God.

I would like to express my cordial gratitude indebtediness and sincere thanks to **Prof. Dr. Shadia Abdel Hamid Fathy** for suggesting the subject of this work, her valuable advice regarding theortical information of different fields related to this research and kind encouragement. Thanks for the help and the fruitful advice.

Very special thanks and respect for *Prof. Dr. Fatma Farag Abdel Hamid* who supported the subject of this thesis with her kind care throughout the research with a continuous encouragement and generous help.

I would like also to provide my sincere and grateful thanks and indebtedness to **Dr. Osama Ahmed Abbas** For his direct supervision of the practical work valuble criticism, generous contribution and fruitful direction that had rend many difficulties.

My Sincere thanks, deepest gratitude and appreciation to **Dr. Asrar Mohamed Hawas** for her kind assistance, valuble aid and generous help in the experimentation procedures and wise comments throughout this work.

CA

LIST OF ABBREVIATIONS

 $\begin{array}{lll} -\text{epi-PGF} & & -\text{epi-piostaglandin F}_{-\alpha} \\ \text{AFI} & & \text{Ayurvedic formulary of India} \\ \text{AGE} & & \text{Advanced glycation end products} \\ \end{array}$

ALT(GPT) Alanine aminotransferase
AMP Adenosine monophosphate
AST(GOT) Aspartate aminotrasferase
ATP Adenosine triphosphate
BMI Body mass indices
BW Body weight

CD Cluster of differentiation antigen number

Chebulic acid

CMV Cytomegalo virus Co-A Co-enzyme A

CTL Cytotoxic-T-Lymphocytes

Cu Copper Cu⁺⁺ Copper ion

DDT Dichloro-diphenyl-trichloro-ethane

DM Diabetes mellitus
DMT- Diabetes mellitus typeDNA Deoxyribonucleic acid
DPP- Dipeptidyl peptidase -

DTH Delayed type hypersensitivity
DTNB dithiobis - nitrobenzoic acid

Ec Extracellular

ESR Electron spin resonance technique

FRC Free radical capacity

GA Gallic acid

GCLC γ-Glutamytcystiene ligase

GK Goto-Kakizaki

GLP- Glucagon – like peptide
GLUT- Glucose transporter type
GPX Glutathione peroxidase
GRD Glutathione reductase

GSH Glutathione

List of Tables

GSSG Glutathione disulphide
GST Glutathione – S – transferase

HO Hydrogen peroxide
HA Humoral antibody
Hb Hemoglobin

HbA C(A C) Glycosylated haemoglobin

HCB Hexachlorobenzene
HDL High density lipoprotein

HEK-N/F Human embryonic kidney nuclear factor

HIV Human immunodeficiency virus

Ho⁻ Hydroxyl radical Hoo⁻ Perhydroxy radical HSV Herpes simplex virus

IDDM Insulin- dependent diabetes mellitus

IGT Impaired glucose tolerance

INH Isoniazid

IR Insulin resistance
JNK Jun N. Terminal kinase
LDL low density lipoprotein
LPS Lipid peroxide levels

MALA Metformin-associated lactic acidosis MBC Minimum bactericidal concentration

MDA Malondialdehyde MF Metformin

MIC Minimum inhibitory concentration

Mn Manganese

mRNA Messenger ribonucleic acid

NAC N – acetyl cystiene

NAD Nicotinamide adenine dinucleotide

NAD⁺ Reduced form of nicotinamide adenine dinucleotide NADP Nicotinamide adenine dinucleotide phosphate

NADP⁺ Reduced form of nicotinamide adenine dinucleotide

phosphate

NADPH Nicotinamide adenine dinucleotide phosphate
NIDDM Non-insulin dependent diabetes mellitus
NPH Neutral protamine hagedorn insulin

O Oxygen molecule

List of Tables

O Superoxide anion
OADS Oral antidiabetic drugs
OS Oxygen species

PBS Phosphate buffered saline PCBS Polychlorinated biphenyls

PCDDS Polychlorinated dibenzo-p-dioxins PCDFS Polychlorinated dibenzo furans

PDX- Pancreatic and duodenal homeobox gene

POPS Persistent organic pollutants

PZA Pyrazinamide RBCs Red blood cells RIF Rifampicin

RNS Reactive nitrogen species
ROS Reactive oxygen species
SOD Superoxide dismutase

STF- Somatostatin transcription factor

T.chebula Terminalia chebula

T DM Type- - diabetes mellitus
T DM Type- - diabetes mellitus
TAE Terminalia aqueous extract

TBARs Thiobarbituric acid reactive substance

T-BHP Tert – butyl hydroperoxide t-BHP Tert-butyl hydroperoxide

TCA Trichloroacetic acid
TFR Total free radical

TNF α Tumer necrosis factor α

TRAP Total peroxyl radical trapping potential

TRFs Terminal restriction fragments

UCCMA United Company for Chemicals and Medical

preparation

UVB Ultra violet B

VLDL Very low density lipoprotein Vo max Maximal oxygen consumption

ZDF Zucker diabetic fatty rat

Zn Zinc

LIST OF TABLES

Table		Page
١	Effect of different treatments on serum glucose and insulin levels.	۸۳
۲	Effect of different treatments on serum urea and creatinine levels.	۸٧
٣	Effect of different treatments on serum AST and ALT activity.	91
£	Effect of different treatments on serum Lipid profile.	90
٥	Effect of different treatments on liver SOD and GSH activities.	1
٦	Effect of different treatments on liver MDA and blood TFR levels.	١٠٤
٧	Extraction yield, and total phenolic, triterpenoid, and tannin content of the two extracts for <i>Terminalia chebula</i> .	١١٦

LIST OF FIGURES

Fig.		Page
١	Terminalia chebula plant.	٤٠
۲	Terminalia chebula fruits.	٤١
٣	Compounds from T. chebula fruit extract.	٤٤
٤	ESR spectrometer.	>7
٥	% Change of serum glucose and insulin in all groups.	۲۷
٦	% Change of serum urea and creatinine concentration in all groups.	٩٠
٧	% Change of serum AST and ALT activity in all groups.	9 £
٨	% Change of serum lipid profile in all groups.	99
٩	%change of liver SOD and GSH activities in all groups.	1.7
1.	%change of liver MDA and blood TFR levels in all groups.	1.4
11	Electron spin resonance spectrum for control group	١٠٨
1 7	Electron spin resonance spectrum for diabetic rats.	1.9

List of Figures

۱۳	ESR spectrum for metformin group.	1.9
١٤	ESR spectrum for metformin diabetic group.	11.
10	ESR spectrum for aqueous extract of <i>T. chebula</i> group.	11.
١٦	ESR spectrum for aqueous extract of <i>T. chebula</i> diabetic.	111
1 ٧	ESR spectrum for metformin + aqueous extract of <i>T. chebula</i>	111
١٨	ESR spectrum for metformin + aqueous extract of <i>T. chebula</i> diabetic.	117
19	ESR spectrum for ethanolic extract of <i>T. chebula</i> group.	117
۲.	ESR spectrum for ethanolic extract of <i>T. chebula</i> diabetic.	117
۲۱	HPLC chromatogram of <i>T. chebula</i> fruits extract.	117

ABSTRACT

The field of herbal medicines research has been gaining significant importance in the last few decades and the demand to use natural products in the treatment of diabetes is increasing worldwide. **Terminalia chebula** is a traditional medicine belonging to the genus Terminalia, family Combretaceae. Fruits of Terminalia chebula (T.chebula) are known for their antidiabic properties to control the hyperglycemia. In the present study, the aqueous and ethanolic extracts of the fruits of *T.chebula* were tested for its hypoglycemic activity after oral administration in alloxan-induced diabetic male albino rats. Moreover, the extracts were also evaluated for their hepatoprotective, renoprotective, hypolipidemic activity, insulin secretion effects up and the antioxidant status on the study of diabetic rats. Malondialdehyde (MDA) as indicator to lipid peroxidation process, glutathione (GSH) level and superoxide dismutase (SOD) activity were measured in rat liver. Free radical capacity (FRC) and glucose levels were determined in blood samples. The effects of metformin treatment only and in combination with the aqueous extract of T.chebula were also studied.

It was evident that treatment of alloxan-induced diabetic rats with aqueous extract of *T.chebula*, metformin and metformin plus aqueous extract of *T.chebula* resulted in a highly significant reduction of glucose level when compared to untreated diabetic group. This was confirmed with the effect of the above treatment on