

UPDATES IN MANAGEMENT OF POST- TRAUMATIC BRAIN INJURY IN ICU

Essay

Submitted for partial fulfillment of Master Degree in Intensive Care

By

Mohammed Rabea Ibrahim

M.B.,B.Ch.

Faculty of Medicine – Ain Shams University

Supervised by PROF, DR. GALAL ADEL EL KADY

Professor of Anaesthesia Faculty of Medicine - Ain Shams University

DR. HEBA BAHAA EL DIN EL SERWI

Assistant Professor of Anaesthesia Faculty of Medicine - Ain Shams University

DR. AHMAD SALAH OMRAN

Lecturer of Anaesthesia Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2012

Acknowledgment

First, I wish to express my deep thanks, sincere gratitude to ALLAH, who always helps me, care for me and grunted me the ability to accomplish this thesis.

I would like to express my deepest gratitude, thanks and gratefulness to **Prof. Dr. Galal Adel ElKady**, Prof. of Anaesthesia, Faculty of Medicine, Ain Shams University, for his enthusiastic support, continuous encouragement valuable scientific advices, and great help through out of the accomplishment of this work.

I am very grateful to **Dr. Heba Bahaa Eldin ElSerwi**, Assistant Professor of Anaesthesia, Faculty of Medicine, Ain Shams University, for her kind supervision, support, indispensable suggestion, and great help through out of course of my thesis.

My sincere thanks to **Dr. Ahmed Salah Omran**, Lecturer of Anaesthesia, Faculty of Medicine, Ain Shams University, for his kind and meticulous supervision, support, help, valuable supervision all through the work.

Words can never express my sincere thanks to my family for their generous support and continuous encouragement.

I would like to express my overlasting gratitude to all my dear friends, colleagues and all who offered me any kind of help, encouragement wishing them the best of all.

Mohammed Rabea Ibrahim

المستحدثات في علاج مرضى اصابات المخ ما بعد صدمات الرأس في وحدة الرعاية المركزة

رسالة تمهيداً للحصول علي درجة الماجستير في الرعاية المركزة

مقحمة من

طبيب/ محمد ربيع ابراهيم بكالوريوس الطب والجراحة

تحت إشراف

أ.د/ جلال عادل القاضي

أستاذ التخدير كلية الطب جامعة عين شمس

د. هبه بهاء الدين السروي

أستاذ مساعد التخدير كلية الطب- جامعة عين شمس

د. أحمد صلاح عمران

مدرس التخدير كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس

LIST OF CONTENTS

Title	Page
LIST OF CONTENTS	I
LIST OF FIGURES	II
LIST OF TABLES	IV
LIST OF ABBREVIATIONS	V
INTRODUCTION	VI
CHAPTER (1): Anatomy of the brain	1
CHAPTER (2): Pathophysiology	
Cerebral blood flow	18
Intracranial pressure	30
Brain edema	36
Mechanism of head injury	38
CHAPTER (3): Management of head injury	
Prehospital management	53
Initial management	60
ICU management	
Monitoring	75
Therapeutic management	94
Neuroprotection	118
SUMMARY	135
REFERENCES	
ARABIC SUMMARY	

LIST OF FIGURES

NO.	Title	Page
1	Principal fissures and lobes of the cerebrum viewed laterally	2
2	Functional areas of the human brain	3
3	Anatomy of brain stem	5
4	Arachnoid space	8
5	Anatomy of the Circle of Willis	12
6	Venous drainage of the brain	15
7	Circulation of cerebral spinal fluid	17
8	The effect of PaCO ₂ and PaO ₂ on CBF	24
9	ICP pressure-volume relationship	32
10	Potential sites of brain herniation Brain edema	37
11	The different components of TBI with ischemic damage are	43
	superimposed on the primary types of injury	43
12	Pathophysiology of ischemia	49
13	Sequence of events following TBI CT brain showing	
	a- extradural hematoma	72
	b- large subdural hematoma with SAH (arrows)	12
	c- intracerebral hemorrhage	
14	MRI of brain stem injury	73
15	ICP measurement via an intraventricular drain	80
16	Techniques used to measure intracranial pressure	82
17	Example of normal intracranial pressure waveforms	83
18	Example of plateau wave of ICP	84
19	Interpretation of jugular venous oxygen saturation values	88
20	An algorithm for the Management of Severe TBI to guide	101-
		102

LIST OF TABLES

NO.	Title	Page
1	Normal cerebral physiologic values	19
2	The Glasgow Coma Scale	56
3	Considerations for assessing readiness to wean in	112
	neurosurgical patients	112

LIST OF ABBREVIATIONS

ACA : Anterior Cerebral Artery

ARDS : Acute Respiratory Distress Syndrome

ALI : Acute Lung Injury

ATLS : Advanced Trauma Life Support

AVDO2 : Arteriovenous Difference Of Oxygen

BBB: Blood Brain Barrier

CBF : Cerebral Blood Flow

CMR : Cerebral Metabolic Rate

CMRO2 : Cerebral Metabolic Rate of Oxygen

CNS: Central Nervous System

CO2 : Carbon Dioxide

COX : Cyclooxygenase

CPP : Cerebral Perfusion Pressure

CSF : Cerebrospinal Fluid

CT : Computed Tomography

CVP : Central Venous Pressure

CVR : Cerebral Vascular Resistance

DBP: Diastolic Blood Pressure

DIC: Disseminated intravascular coagulopathy

DVT: Deep vein thrombosis

EEG: Electroencephalography

ELISA : Enzyme Linked Immunosorbent Assay

EMS: Emergency Medical Service

EMT: Emergency Medical Team

EPO: Erythropoietin

ETCO2 : End Tidal Carbon Dioxide

FAST: Focused Assessment By Sonography In Trauma

FiO2 : Fraction of inspired oxygen

GABA: Gamma-Aminobutyric Acid

GCS : Glasgow Coma Scale

HES: Hydroxyethyl Starch

HMGCoA: 3hydroxy 3methyl glut aryl coenzyme A

ICA: Internal Carotid Artery

ICAM: Intercellular Adhesion Molecules

ICP: Intracranial Pressure

ICU: Intensive Care Unit

IgG/M: Immunoglobin G/M

IL: Interleukin

LMA: Laryngeal Mask Airway

LMWH: Low Molecular Weight Heparin

MAP : Mean Arterial Blood Pressure

MCA : Middle Cerebral Artery

MgSO4 : Magnisium sulphate

MgCl2 : Magnisium chloride

MILS: Manual In Line Stabilization

MRI : Magnetic Resonance Imaging

MRS : Magnetic Resonance Spectroscopy

MSC : Mesenchymal Stromal Cells

MV : Mechanical ventilation

N2O : Nitrous Dioxide

NGF: Nerve Growth Factor

NIRS : Near Infrared Spectroscopy

NMDA : N-Methyl-D-Aspartate

NO : Nitric Oxide

NOS: Nitric Oxide Synthase

NTF : Neurotrophic Factor

O2 : Oxygen

PaCO2 : Arterial Carbon Dioxide Tension

PaO2 : Arterial Oxygen Tension

PCA : Posterior Cerebral Artery

PET: Positron Emission Tomography

PEEP: Positive end Expiratory Pressure

PGE2 : Prostaglandin E2

pH : Potential Of Hydrogen

PT : Prothrombin Time

PTiO2: Brain Tissue Oxygen Tension

PTT : Partial Thromboplastin Time

RBC: Red Blood Cells

RVM : Rostral Ventrolateral Medulla

SAH : Subarachnoid Hemorrhage

SBP: Systolic Blood Pressure

SCI : Spinal Cord Injury

SjvO2 : Jugular Venous Oxygen Saturation

SPECT: Single Photon Emission Computed Tomography

Sao2 : Arterial Oxygen Saturation

SpO2 : Oxygen Saturation

TBI: Traumatic Brain Injury

TCD: transcranial doppler

TH: Therapeutic Hypothermia

TNF: Tumor Necrosis Factor

UH : Unfractionated Heparin

VC : Vital Capacity

VILI: Ventilator Induced Lun g Injury

VIP : Vasoactive Intestinal Pe ptide

VT: Tidal Volume

INTRODUCTION

Traumatic brain injury (TBI) reflects an insult to the brain from an external mechanical force (high–energy acceleration or deceleration) that might cause a temporary or permanent impairment of physical and cognitive functions along with changes in mental status. TBI resulting from head injury is the leading cause of death in individuals younger than 45 years and accounts for approximately 40% of all deaths from acute injuries in the United States.

Neurological complications from TBI can occur as a direct result of the primary injury or may be caused by secondary injuries that follow within minutes to days. The primary injury is typically the result of a direct initial insult and secondary injury is caused by subsequent cascade of biochemical changes that are triggered by ischemia and result in disruption of the normal central nervous system balance between oxygen supply and demand. The entire secondary injury process is a vicious cascade of biochemical changes that leads to further spread of the ischemic injury and neurological deficits.

Critical care of head injured patients is complex and based on recognition and treatment of hazardous increase in intracranial pressure, with therapeutic targets for neuroprotection following TBI.

AIM OF THE WORK

This essay aims to provide an overview of the current management of traumatic brain injury in intensive care unit.

CHAPTER 1

ANATOMY OF THE BRAIN

The central nervous system (CNS) can be divided into brain and spinal cord .The brain, is contained within the cranium, and constitutes the upper, greatly expanded part of the central nervous system. The average weight of the brain, in the adult male, is about 1380 gm; that of the female, about 1250 gm. (*Mendoza JE*, *and Foundas AL 2008*).

The Cerebral Hemispheres

The cerebral hemispheres constitute the largest part of the brain. The hemispheres are separated medially by the longitudinal cerebral fissure. They are connected across the middle line by the corpus callosum. Each possesses a central cavity (the lateral ventricle) and presents three surfaces: lateral, medial, and inferior. These three surfaces are separated from each other by the borders: supero-medial, infero-lateral, medial occipital and medial orbital. The surfaces of the hemispheres are moulded into a number of irregular eminences, named gyri or convolutions, and separated by furrows termed fissures or sulci. By means of these fissures and sulci, assisted by certain arbitrary lines, each hemisphere is divided into the following lobes: the frontal, the parietal, the temporal, and the occipital. (*Mendoza JE, and Foundas AL 2008*).

The anterior end of the hemisphere is named the frontal pole; the posterior end, the occipital pole; and the anterior end of the temporal lobe, the temporal pole.

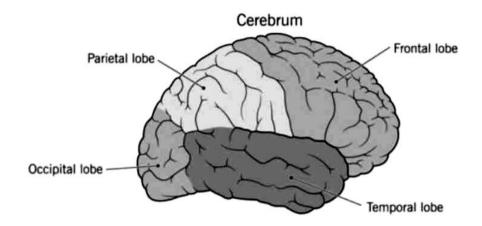


Figure 1- Principal Fissures and lobes of the cerebrum viewed laterally. (Fine C, 2008)

Structure of the Cerebral Hemispheres:

The cerebral hemispheres are composed of gray and white substance. The former covers their surface, and is termed the cortex; the latter occupies the interior of the hemispheres. The white substance consists of medullated fibers, varying in size, and arranged in bundles separated by neuroglia. They may be divided, according to their course and connections, into three distinct systems. (*Fine C*, 2008)

- 1. Projection fibers connect the hemisphere with the lower parts of the brain and with the spinal cord.
- 2. Transverse or commissural fibers unite the two hemispheres.