

Science and Education

Bioleaching and Biosorption of Some Rare Earth Elements and Actinides from Soil Sample in Sinai.

A Thesis
Submitted in Partial Fulfillment of the Requirements for
The Degree of

Master of Science

in

Microbiology

by

Noha Mohammed Kamal Abd El-Fattah

B. Sc Microbiology and Chemistry - 2007

to

Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University

2013

Ain Shams University
Faculty of Women for Arts,
Science and Education

Approval Sheet

Title: Bioleaching and Biosorption of Some Rare Earth Elements and Actinides from Soil Samples in Sinai.

Name: Noha Mohammed Kamal Abd El-Fattah.

Supervisors:	Approved
1- Ass. Prof. Dr. Maha Amin Hewedy, Ass. Prof. of Microbiology, Botany Department, Faculty of Women, Ain Shams University.	
2- Ass. Prof. Dr. Abeer Ahmed Roshdy, Ass. Prof. of Microbiology, Botany Department, Faculty of Women, Ain Shams University.	
3- Prof. Dr. Hamed Ibrahim Mira, Prof. of Geology, Geochemistry Department, Nuclear Material Authority of Egypt.	

Dedication

I would like to dedicate this work to my wonderful mother Soaad, my great father Mohammed, my dear husband Moustafa my brothers, my sisters and my friends and also to express my sincere and deepest thanks to them for their great help and support.

Noha M. Kamal

Acknowledgments

First, I can't be thankful enough for Allah to whom I am indebted for his blessings on me.

I want to express my deepest appreciation and sincere gratitude to my supervisors for initially accepting me as a Master's Candidate and later on for their endless encouragement, constructive criticism, helpful and enlightening discussions, guidance during the preparation of this work, valuable ideas and basic editing.

My special thanks go to Dr. Mohammed Al-Ahmady and Dr. Tarek Amer, at Nuclear Materials Authority of Egypt for their great help during my study. I am also grateful to Ayman Mohammed, Mohammed Hussein and Naglaa Abd El-Kader for their technical assistance in the analysis of metals.

My special thanks also go to Dr. Wael Abo El-Wafa at The Applied Research Center of Medicinal Plants of the National Nutrition Institute of Ministry of Health and Population, Egypt, for his great support and help in identification of actinomycetes isolates.

Finally, I would like to extend my sincere appreciation and acknowledge to all doctors and colleagues in Botany Department, Ain Shams University whose names and contributions I cannot enumerate due to space limitation. To you all, I say *Thanks*!

List of Abbreviations

Ac	Actinides
ATSDR	Agency for Toxic Substances and Disease Registry
BLASTN	Basic Local Alignment Search Tool for Nucleotides
Ce	Cerium
CEC	Cation exchange capacity
CFU	Colony forming units
DCP	Dicalcium phosphate
EC	Electrical conductivity
EDX	Energy dispersive X-ray
EPS	Extracellular polymeric substances
Eu	Europium
FAA	Flame Atomic Absorption
Gd	Gadolinum
HGT	Horizontal gene transfer
HPGe	High Purity Germanium
HREEs	Heavy rare earth elements
IAEA	International Atomic Energy Agency
ICP-OES	Inductively Coupled Plasma Optical Emission Spectrometry
IQ	Intelligence Quotient
ISO	International Organization for Standardization
ISP	International Streptomyces Project
La	Lanthanum

LPS	Lipopolysaccharide
LREEs	Light rare earth elements
Lu	Lutetium
Mg	Magnesium
MIC	Minimum inhibitory concentration
MR-VP	Methyl red – Voges Proskauer
NCBI	National Centre for Biotechnology Information
NCRP	National Council on Radiation Protection and Measurements
Nd	Neodymium
OM	Organic matter
ppm	Parts per million
PGPR	Plant growth promoting rhizobacteria
Pr	Praseodymium
REEs	Rare earth elements
rpm	Round per minute
rRNA	Ribosomal Ribonucleic acid
Sc	Scandium
SEM	Scanning Electron Microscopy
Sm	Samarium
SRB	Sulphate-reducing bacteria
Th	Thorium
U	Uranium
USDA-NRCS	United States Department of Agriculture - Natural Resources Conservation Service
USEPA	United States Environmental Protection Agency

UV	Ultraviolet
VP	Voges-Proskauer
Y	Yttrium
Yb	Ytterbium
Z	Atomic number

Table of Contents

Title	Page
1 Introduction	1
2 Review of Literature	4
2.1- Lanthanides and Actinides and their	6
occurrence.	
2.1.1- Lanthanides.	8
2.1.2- Actinides.	10
2.2- Uses of REEs and radionuclides	12
2.3- Toxicology of REEs and radionuclides	15
2.3.1- Toxicology on humans	15
2.3.2- Toxicology on soil microorganisms	18
2.3.3- Ecotoxicology	20
2.4- Methods for the removal/recovery of	21
REEs and radionuclides	
2.4.1- Bioleaching (mobilization)	24
2.4.1.1- Microorganisms	24
2.4.1.2- Mechanisms	26
2.4.1.3- Bioleaching as an alternative	27
2.4.1.4- Industrial practice	29
2.4.2- Biosorption	29
2.4.2.1- Metal binding sites	31
2.4.2.2- Factors affecting biosorption	35

2.4.2.3- Mechanisms of biosorption	35
2.4.2.4- Selective accumulation of REEs	40
and radionuclides	
2.4.2.5- Metal recovery from loaded	41
biomass (Desorption and reuse of	
biosorbent)	
2.4.2.6- Commercial biosorbents	42
2.5- Several effect of REEs on microorganisms	42
2.5.1- on growth and morphology	42
2.5.2- on enzyme activity	44
2.5.3- on antibiotic production	45
3 Materials and Methods	47
I- <u>Materials</u>	47
1- Microbial strains	47
2- Soil sample	47
3- Microbiological media	49
3.1- Media used for isolation, maintenance and	49
testing of the microorganisms used in the	
study	
3.1.1- Nutrient agar medium	49
3.1.1- Nutricit agai medium	
3.1.2- Starch Nitrate medium	49
3.1.2- Starch Nitrate medium	49

3.2.1- Starch agar medium	50
3.2.2- Nutrient gelatin	50
3.2.3- Simmons citrate agar medium	51
3.2.4- Peptone iron agar medium	51
3.2.5- Tryptophan broth	51
3.2.6- Voges-Proskauer broth	52
3.2.7- Broth medium for acid production	52
from carbohydrates	
3.2.8- Nitrate broth	53
3.2- Media used for the identification of the	53
tested actinomycete	
3.3.1- Yeast extract- malt extract agar	53
medium (ISP2)	
3.3.2- Oatmeal extract agar medium (ISP3)	54
3.3.3- Inorganic salts-starch agar medium	54
(ISP4)	
3.3.4- Glycerol-asparagine agar medium	55
(ISP5)	
3.3.5- Peptone yeast extract iron medium	56
(ISP6)	
3.3.6- Tyrosine agar medium (ISP7)	56
3.3.7- Bennet's agar medium	57
3.3.8- Carbon utilization agar medium	57
(ISP9)	

3.4- Dicalcium phosphate (DCP) agar medium	58
II- <u>Methods</u>	59
1- Analysis of soil sample	59
1.1- Physico-chemical analysis	59
1.2- Enumeration of the soil's microbial	60
populations	
2- Isolation of bacteria and actinomycetes from	61
Abu Thor sample	
3- Bioleaching and biosorption studies	61
3.1- Culturing and obtaining microbial biomass	62
3.2- Bioleaching and biosorption experiment	62
3.3- Analysis of the elements adsorbed on the	63
cell wall of the tested microorganisms	
3.4- Elemental analysis of leach liquor	63
3.5- Determination of the pH of the leach	63
liquor	
4- Selective biosorption of LREEs	64
5- Factors affecting bioleaching	64
5.1- Effect of different incubation periods	64
5.2- Effect of different pH values	64
5.3- Effect of different incubation temperatures	65
6- Optimization of conditions for the	65
bioleaching of REEs using isolate A	
6.1- Recovery of REEs from leach liquor	66

6.2- Desorption of REEs and U from the cells	67
of isolate A1.	1
7- Identification of bacteria	68
7.1- Cultural characteristics and microscopic	68
appearance	l
7.2- Physiological characters	68
7.2.1- Hydrolysis of starch	68
7.2.2- liquefaction of gelatin	69
7.2.3- Utilization of citrate	69
7.2.4- H ₂ S production	69
7.2.5- Indole production	70
7.2.6- Voges-Proskauer (VP) reaction	70
7.2.7- Methyl Red Voges-Proskauer (MR-	70
VP) reaction	1
7.2.8- Fermentation of carbohydrates	71
7.2.9- Production of catalase	71
7.2.10- Reduction of nitrate	71
7.2.11- Growth at 55°C	72
7.2.12- Growth in 6.5% NaCl	72
8- Identification of actinomycetes	73
8.1- Cultural and morphological characteristics	73
8.2- Physiological characteristics	74
8.2.1- Melanin production	74
	1
	i e

8.2.2- The ability to grow on Czapek's agar	74
medium	
8.2.3- Detection of sodium chloride	74
tolerance	
8.2.4- Sensitivity to Streptomycin	75
8.2.5- Antimicrobial activity	75
8.2.6- Carbon Utilization	76
8.2.7- 16S rRNA analysis Procedure	77
9- Measurement of phosphatase activity of the	77
tested microorganisms	
10- Effect of rare earth elements on growth and	78
antibiotic production of the tested	
actinomycetes	
11- Statistical analysis	79
4 Results and Discussion	80
4.1- Chemical and physical analysis of Abu Thor	80
sample	
4.2- Enumeration of the soil's microbial	83
populations	
4.3- Bioleaching	84
4.4- Biosorption	86
4.5- Selective biosorption of LREEs	103
4.6- Factors affecting bioleaching	104
4.6.1- Effect of incubation period	104

	4.6.2- Effect of pH	107
	4.6.3- Effect of temperature	111
	-	
	4.7- Optimization of conditions	114
	4.8- Desorption of REEs from cell wall of	114
	actinomyces	
	4.9- Recovery of REEs from leach liquor	114
	4.10- Identification of bacteria	117
	4.11- Identification of the most efficient	119
	actinomycete	
	4.11.1- Isolate A1	119
	4.11.2- Isolate A8	122
	4.12- Measurement of phosphatase activity	126
	4.13- Effect of rare earth elements on growth of	130
	actinomycetes	
	4.14- Effect of rare earth elements on growth of	132
	actinomycetes	
	4.14.1- Antifungal activity	133
	4.14.2- Antibacterial activity	133
5	Conclusion	140
6	Summary	142
7	References	145-176

List of Tables

Table	Page
Table 1: The current and potential uses of rare earth elements	14-15
Table 2: Some chemical and physical characteristics of Abu Thor soil	81
Table 3: Elemental analysis of Abu Thor soil	82
Table 4: Total count of the microbial populations in Abu Thor soil	83
Table 5: The percentage of elements adsorbed on the cell walls of the tested bacteria	90-91
Table 6: The percentage of elements adsorbed on the cell walls of the tested actinomycetes	92-93
Table 7: The percentage of elements absorbed on the cell walls of isolate A9	103
Table 8: Effect of incubation time on REEs-leaching, pH of leach liquor and count of actinomycetes	105