STUDIES ON FACTORS EFFECTING GENETIC TRANSFORMATION OF BARLEY (Hordeum vulgare L.) USING MATURE EMBRYO

By

SHIMAA EL-SAYED RASHAD EL-SAYED

B. Sc. Agric. Sc. (Biotechnology), Cairo University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In

Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON FACTORS EFFECTING GENETIC TRANSFORMATION OF BARLEY (Hordeum vulgare L.) USING MATURE EMBRYO

By

SHIMAA EL-SAYED RASHAD EL-SAYED

B. Sc. Agric. Sc. (Biotechnology), Cairo University, 2004

This thesis for M.Sc. degree has been approved by:

Dr. Hala Fawzy Issa	•••••
Senior Researcher of Agricultural, Genetic Eng	gineering, Research
Institute, Agriculture Research Center.	
Dr. Alia Ahmed Mohamed El-Seoudy	•••••
Prof Emeritus of Genetics, Faculty of Agricult	ure, Ain Shams
University	
Dr. Eman M. Fahmy	•••••
Prof. of Genetics, Department of Genetics, Fac	culty of Agriculture,
Ain Shams University.	
Dr. Fatthy M. Abdel-Tawab	•••••
Prof. Emeritus of Genetics, Faculty of Agricul	ture, Ain Shams
University.	

Date of Examination: 8 / 7 / 2012

STUDIES ON FACTORS EFFECTING GENETIC TRANSFORMATION OF BARLEY (Hordeum vulgare L.) USING MATURE EMBRYO

By

SHIMAA EL-SAYED RASHAD EL-SAYED

B. Sc. Agric. Sc. (Biotechnology), Cairo University, 2004

Under the supervision of:

Dr. Fatthy M. Abdel-Tawab

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (principal supervisor).

Dr. Eman M. Fahmy

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Mahmoud M. Saker

Prof. of Plant Biotechnology, Plant Biotechnology Department, National Research Centre.

ABSTRACT

Shimaa El-Sayed Rashad El-Sayed: Studies on Factors Effecting Genetic Transformation of Barley (*Hordeum vulgare* L.) Using Mature Embryo. Unpublished M.Sc. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2012.

The effects of types of medium and methods of sterilization on mature embryo culture of barley (*Hordeum Vulgare* L.) were tested. Mature seeds were surface sterilized in Sodium hypochlorite followed by 70% ethyl alcohol, and then washed several times in sterile distilled water. Plant regeneration from direct and indirect embryogenic callus of eight barley genotypes Giza 123, Giza 124, Giza 125, Giza 126, Giza 130, Giza 2000 and two genotypes wild types from Marssa Matrouh (El kasr and Awlad Ali) was tested on seven different media were tested using maltose as the carbon source.

Out to these cultivars two commercially important cultivars (Giza 130, Giza 126) and one wild type Elkasr, were tested on three different of hormones only and stability of all component media of medium M1. Revealed the highest frequencies of direct regeneration of embryogenic calli for M1 (60.42%), shoots (51.67%) and roots (48.75%) and frequencies of indirect regeneration of embryogenic calli for M1 (91.11%), shoots (51.11%) and roots (38.89%). Regenerated plants were obtained from this callus and genotypes. These genotypes were examined for somaclonal variation. Somaclonal variation has been tested intensively also in the three barley (El Kasr, Giza 130 and Giza 126) genotypes using molecular genetic analysis (protein and isozymes) and RAPD PCR. The Transformation of barley based on the infection of mature embryos with *Agrobacterium*

tumefactions system used for transformation of explants Elkasr village using the strain harbors the pITB-AFP plasmid vector which contains defensin (AFP) gene, hygromycin phosphor transferase (hpt) and - glucuronidase (GUS) genes, as selectable and marker genes. The Transient expression of AFP gene was investigated as a preliminary test of the transformation efficiency. Transformation experiments were carried out with different parameters and the one barley genotype Elkasr. The tested transformation parameters included: the type of explants mature embryos based on the results of GUS transient expression. Selection was initiated on (M1) Media containing 60 mg L-1 hygromycin. PCR analysis using primers specific for the AFP and GUS genes using specific probe.

Key words: Barley, *Hordeum vulgare*, mature embryos, plant regeneration, somaclonal variation, protein, Isozymes, RAPD, transformation Agrobacterium, defensin, *AFP* gene, Gus assay.

ACKNOWLEDGEMENT

First, of all my obedience, devotion, deepest thanks and praise are due and fully extended-as always to **Allah**, **the greatest and almighty** that has created us and bestowed upon us a lot of blessing, which we cannot enumerate and thank enough.

It would have been simply impossible to accomplish the tremendous work implied by the thesis goals without the constant support and friendly attitude of many wonderful people I was honored to know. I would like to offer my sincere gratitude to them.

I would like to express my deepest thanks and sincere gratitude to **Prof. Dr. Fatthy M. Abdel-Tawab,** Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University for his supervision, suggesting the problem valuable advices, unfailing help during the course of investigation, in writing the manuscript. This work benefited greatly from his efforts. I would gratefully acknowledge him.

Great thanks would be expressed to **Prof. Dr. Eman M. Fahmy,** Professor of Genetics, Genetics Dept., Faculty of agriculture, Ain Shams University, for her supervision, unfailing help during the course of investigation, in writing the manuscript, kind support and motherly guidance.

My deep appreciation to **Prof. Dr. Mahmoud M. Saker**, Prof. of Plant Biotechnology in Genetic Engineering and Biotechnology Division, Plant Biotechnology Department, N.R.C., for his advice, help, encouragement, and sincere guidance throughout the practical work.

Finally, thanks are offered to all the staff members and colleagues of Plant Biotechnology, Genetic Engineering and Biotechnology Division, Plant Biotechnology Department, N.R.C., for help and cooperation.

Great thank are also due to all members of Genetics Department, Faculty of Agriculture, Ain Shams University, for their great help and supports during this work.

Dedication is extended to my dad and mom, my husband Ahmed, my sister, Marwa and my brothers, Hossam and Ahmed, I love all of them.

CONTENTS

	Page
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	X
I.INTRODUCTION	1
II.REVIEW OF LITERATURE	5
1- Plant regeneration in barley	5
1-1-Influence of barley variety on regeneration system	5
2- Somaclonal variation in Barley	13
2-1- Vegetative traits	13
2-2- Molecular genetic analysis	17
2-2-1- Protein SDS-PAGE electrophoretic	18
2-2-2- Isozymes polymorphism	19
2-2-3- Randomly amplified polymorphic DNA polymerase	20
chain reaction (RAPD-PCR)	
33- Genetic transformation	23
3-1- Genetic transformation in barley	23
3-2- Selectable and screenable markers for transformation	35
3-3- Defensin gene	38
III. MATERIALS AND METHODS	42
a. Plant Material	42
b. Methods	43
1. Regeneration of barley genotypes	43
1.1. Surface sterilization of grains	43
1.2. Explantation	44
1.2.1. Intact mature embryo culture	44
1.3. Callus induction	44
1.4. Callus maintenance and selection	45
1.5 Regeneration protocol	46

1.5.1. Direct shoot and root organogenesis	46
1.5.2. Indirect shoot and root organogenesis	46
2. Somaclonal variation	47
2.1. Molecular genetic studies	47
2.1.1. SDS-PAGE of proteins	47
a. Extraction buffer	47
b. Gel buffers	48
c. Gel preparation	48
d. Gel running buffer	50
e. Gel staining and destaining solutions	50
2.2. Isozymes electrophoresis	51
a. Isozymes electrophoretic conditions	51
b. Extraction buffer	51
c. Gel buffer solutions	51
d. Gel preparation	52
e. Running buffer	52
f. Isozymes visualization	53
2.3. RAPD-PCR	54
a. Genomic DNA extraction using CTAB	54
b. CTAB Buffer	54
c. Polymerase chain reaction (PCR) conditions	56
3. Transformation	58
a. Plant materials	58
b. Bacterial strain and plasmid	58
3.1. Genetic transformation	63
3.1.1. Optimization of Agrobacterium conditions via GUS	63
transient expression	
3.2. Evaluation of Putative Transgenic Plants	64
3.2.1. Histochemical Gus assay	64
3.3. Molecular analysis for AFP gene transformation	66
3.3.1. Genomic DNA extraction	66

3.3.2. Polymeras	e chain reaction (PCR) analysis	67
4. Statistical Ana	alysis	68
IV. RESULTS ANI	D DISCUSSION	69
1. Plant Regener	ration in Barley	69
1.1. Sterilization	of grains	69
1.2. Callus induc	ction and somatic embryogenesis	69
1.3. Direct regen	neration	74
1.3.1. Shoots and	d roots formations of plantlets	75
1.4. Indirect sho	ots and roots organogenesis	77
1.4.1. Shoots and	d roots formation of plantlets	77
2. Somaclonal va	ariations	80
2.1. Biochemica	l and Molecular genetic analysis	81
2.1.1. SDS-PAG	E electrophoresis	81
2.1.2. Isozymes	electrophoresis	84
-Esterase (Est.)		84
Peroxidase (Prx))	85
2.1.3. RAPD PC	'R	86
3. Barley transfo	rmation	92
3.1. Optimizatio	on of Agrobacterium transformation via GUS	
transient express	sion3.3.3.1. PCR analysis	93
3.1.1. Indirect sh	noots and roots organogenesis	95
3.2. Molecular a	nalysis	97
3.2.1. PCR analy	ysis	97
V. SUMMARY		100
1- Plant regenera	ation in barley	101
1-1- Direct reger	neration	101
1-2- Indirect rege	eneration	101
1- Somaclonal v	ariation	102
2.1. SDS-PAGE	of protein	102
2.2. Isozymes ele	ectrophoresis	102
2.3. RAPD PCR		102

3. Barley Transformation	103
3.1. Optimization of Agrobacterium transformation via GUS	
transient expression	103
3.2. Molecular analysis	103
3.2.1. PCR analysis	103
VI. REFERENCES	105
ARABIC SUMMEARY	

LIST OF TABLES

No.	Title	Page
1	Code number and Pedigree of the eight barley	
	genotypes	43
2	Different Components of Sterilization Methods used for	
	seeds	44
3	Seven different compositions of media were tested	46
4	Components of Media used for Regeneration,	
	Maintenance	47
5	PCR reaction mixtures	58
6	PCR program	58
7	RAPD primers used in PCR reaction	59
8	YEB-medium component and concentration	62
9	LB medium components	62
10	PCR reaction mixture	69
11	PCR program temperature, time and No. of cycles	69
12	Mean frequencies of embryogenic calli	76
13	Mean frequencies of direct regeneration of (shoots and	
	roots formation) obtained by culturing mature embryos	
	of eight genotypes on seven tested media	78
14	Frequencies of indirect regeneration of (shoots and roots	
	formation) obtained by culturing mature embryos	
	(intact) of three genotypes on three tested media	81
	Mean Frequency of Direct Regeneration (Embryogenic	
15	The presence (+) and absence (-) of protein bands of the	
	barley genotype G130 as revealed by SDS-PAGE	84
16	The presence (+) and absence (-) of protein bands of the	
	barley genotype El-Kasr as revealed by SDS-PAGE	85
17	The presence (+) and absence (-) of protein bands of the	
	barley genotype G126 as revealed by SDS-PAGE	85

No.	Title	Page
18	The presence (+) and absence (-) of bands in the two	
	isozymes systems (Est. and Prx.) among the fifteen	
	Barley genotypes	88
19	The presence (1) and absence (0) of amplified DNA	
	fragments that produced by Op X 11 primer with the	
	fifteen barley genotypes	89
20	The presence (1) and absence (0) of amplified DNA	
	fragments that produced by Op T 08 primer with the	
	fifteen barley samples	90
21	The presence (1) and absence (0) of amplified DNA	
	fragments that produced by Op C 19 primer with the	
	fifteen barley genotypes	92
22	The presence (1) and absence (0) of amplified DNA	
	fragments that produced by Op D 13 primer with the	
	fifteen barley samples	93
23	The presence (1) and absence (0) of amplified DNA	
	fragments that produced by Op X 17 primer with the	
	fifteen barley samples	94
24	Means frequencies of transformation (%) of shoots and	
	roots formation obtained by culturing mature embryos	
	(intact) of three genotypes on three tested media	100

LIST OF FIGURES

No.	Title	Page
1	Calli induction of barley genotype El-Kasr (as an example)	
	on the seven different media (M1- M7)	73
2	Mature embryos intact, (B) Initiation of calli, (C)	
	Embryogenic calli formation (D) Somatic embryogenesis	
	(E) Somatic embryogenesis and initiation of regeneration	74
3	Direct regeneration frequency of eight barley genotypes	
	using mature embryos on seven media (M1-M7)	76
4	Indirect regeneration frequency of the three barley	
	genotypes El-Kasr, G130 and G126 using mature embryos	
	on the three media	81
5	A, B and C stages of direct regeneration media and D, E	
	and F stages of indirect regeneration media	82
6	SDS-PAGE protein profiles of Giza 130; lane 1 molecular	
	weight protein marker (KDa), lane 2 control and lanes 3-6	
	four regenerats	83
7	SDS-PAGE protein profiles of El-Kasr; lane 1 Molecular	
	weight protein marker (KDa), lane 2 control and lanes 3-6	
	four regenerats	84
8	SDS-PAGE protein profiles of El-Kasr; lane 1 Molecular	
	weight protein marker (KDa), lane 2 control and lanes 3-6	
	four regenerats	86
9	Zymogram of -Esterase (Est.) in the three barley	
	genotypes (El-kasr, G126 and G 130). Each one is	
	represented by five samples control (1, 6 and 11) and the	
	others are four regenerats for each genotype	87
10	Zymogram of peroxidase (prx.) in the three barley	
	genotypes (El-kasr, G126 and G 130). Each one is	

No.	Title	Page
	represented by five samples; control (1, 6 and 11) and four	
	regenerats	87
11	DNA polymorphisms in three barley genotypes (El kasr,	
	G126 and G 130) with primer Op X 11. Each one is	
	represented by five samples; control (1, 6 and 11) and four	
	regenerats	89
12	DNA polymorphisms in three barley genotypes (El kasr,	
	G126 and G 130) with primer Op T 08. Each one is	
	represented by five samples; control (1, 6 and 11) and four	
	regenerats	90
13	DNA polymorphisms in three barley genotypes (El kasr,	
	G126 and G 130) with primer Op C 19. Each one is	
	represented by five samples; control (1, 6 and 11) and four	
	regenerats	91
14	DNA polymorphisms in three barley genotypes (el kasr,	
	G126 and G 130) with primer Op D 13. Each one is	
	represented by five samples; control (1, 6 and 11) and four	
	regenerats	93
15	DNA polymorphisms in three barley genotypes (El kasr,	
	G126 and G 130) with primer Op X 17. Each one is	
	represented by five samples; control (1, 6 and 11) and four	
	regenerats.	94
16	PCR confirmations of pITB-AFP plasmid vector which	
	contains defensin (AFP) gene under the transcriptional	
	control of cauliflower mosaic virus 35S promoter (CaMV-	
	35S)	96
17	GUS gene expression in transformed mature embryos and	
	callus: (1) Control mature embryos, (2) positively	
	transformed mature embryos, (3) control callus, (4)	
	permanent positively transformed callus, (5) control shoot	